Skip to main content

Astrophysics for People in a Hurry – Neil deGrasse Tyson *****

When I reviewed James Binney’s Astrophysics: A Very Short Introduction earlier this year, I observed that the very word ‘astrophysics’ in a book’s title is liable to deter many readers from buying it. As a former astrophysicist myself, I’ve never really understood why it’s considered such a scary word, but that’s the way it is. So I was pleasantly surprised to learn, from Wikipedia, that this new book by Neil deGrasse Tyson ‘topped The New York Times non-fiction bestseller list for four weeks in the middle of 2017’.

Like James Binney, Tyson is a professional astrophysicist with a string of research papers to his name – but he’s also one of America’s top science popularisers, and that’s the hat he’s wearing in this book. While Binney addresses an already-physics-literate audience, Tyson sets his sights on a much wider readership. It’s actually very brave – and honest – of him to give physics such prominent billing; the book could easily have been given a more reader-friendly title such as ‘Secrets of the Universe’. But it would still have been astrophysics by stealth, because it’s only thanks to physics that we understand anything beyond our own planet. As Tyson puts it: ‘the universality of physical laws makes the cosmos a marvellously simple place’.

Although the book is new, its chapters (now suitably updated) originated over a period of many years as self-contained magazine articles. They cover a wide range of topics, from the big bang and dark matter, via the electromagnetic spectrum and the periodic table, to asteroids and exoplanets. The coverage isn’t comprehensive; some of the most obvious subjects, like stellar evolution and black holes, are barely touched on. That isn’t a problem, though. The book doesn’t set out to explain everything we know about the universe, but to show that what we do know about it, we know because of physics. That’s just as interesting, and much rarer at a popular science level.

Personally, I loved the book – and I would have loved it even more when I was 15 years old, and my knowledge of physics was largely aspirational rather than actual. In those days, the book would probably have been written by someone like Isaac Asimov – and that’s a fair comparison, because Tyson’s style is a lot like Asimov’s. It manages to be clever, engaging, witty and lucid all at the same time. I kept finding myself stopping to read bits again because they were so good. Here are three examples of the kind of thing I mean:
  • On quarks: ‘The most familiar quarks are ... well, there are no familiar quarks. Each of their six subspecies has been assigned an abstract name that serves no philological, philosophical or pedagogical purpose, except to distinguish it from the others.’
  • On dark energy: ‘When you estimate the amount of repulsive vacuum pressure that arises from the abbreviated lives of virtual particles, the result is more than 10120 times larger than the experimentally determined value of the cosmological constant. This is a stupidly large factor, leading to the biggest mismatch between theory and observation in the history of science.’
  • On the cosmic microwave background: ‘The molecule cyanogen gets excited by exposure to microwaves. If the microwaves are warmer ... they excite the molecule a little more. In the big bang model, the cyanogen in distant, younger galaxies gets bathed in a warmer cosmic background than the cyanogen in our own Milky Way galaxy. And that’s exactly what we observe (you can’t make this stuff up).’
Although the book’s aimed at beginners, I have to admit that rather spooky last point came as news to me. And it wasn’t the only thing I learned. I  never realised there was enough energy in a single cosmic ray particle to knock a golf ball across a putting green. I didn’t know thunderstorms could produce gamma rays. Or that, if we could see Jupiter’s magnetosphere, it would be several times bigger than a full Moon in the sky. 

All in all, this is a book I can heartily recommend to anyone, regardless of how much or how little they know about physics.


Hardback:  

Kindle:  
Using these links earns us commission at no cost to you


Review by Andrew May

Comments

Popular posts from this blog

We Are Eating the Earth - Michael Grunwald *****

If I'm honest, I assumed this would be another 'oh dear, we're horrible people who are terrible to the environment', worthily dull title - so I was surprised to be gripped from early on. The subject of the first chunk of the book is one man, Tim Searchinger's fight to take on the bizarrely unscientific assumption that held sway that making ethanol from corn, or burning wood chips instead of coal, was good for the environment. The problem with this fallacy, which seemed to have taken in the US governments, the EU, the UK and more was the assumption that (apart from carbon emitted in production) using these 'grown' fuels was carbon neutral, because the carbon came out of the air. The trouble is, this totally ignores that using land to grow fuel means either displacing land used to grow food, or displacing land that had trees, grass or other growing stuff on it. The outcome is that when we use 'E10' petrol (with 10% ethanol), or electricity produced by ...

Battle of the Big Bang - Niayesh Afshordi and Phil Harper *****

It's popular science Jim, but not as we know it. There have been plenty of popular science books about the big bang and the origins of the universe (including my own Before the Big Bang ) but this is unique. In part this is because it's bang up to date (so to speak), but more so because rather than present the theories in an approachable fashion, the book dives into the (sometimes extremely heated) disputed debates between theoreticians. It's still popular science as there's no maths, but it gives a real insight into the alternative viewpoints and depth of feeling. We begin with a rapid dash through the history of cosmological ideas, passing rapidly through the steady state/big bang debate (though not covering Hoyle's modified steady state that dealt with the 'early universe' issues), then slow down as we get into the various possibilities that would emerge once inflation arrived on the scene (including, of course, the theories that do away with inflation). ...

Why Nobody Understands Quantum Physics - Frank Verstraete and Céline Broeckaert **

It's with a heavy heart that I have to say that I could not get on with this book. The structure is all over the place, while the content veers from childish remarks to unexplained jargon. Frank Versraete is a highly regarded physicist and knows what he’s talking about - but unfortunately, physics professors are not always the best people to explain physics to a general audience and, possibly contributed to by this being a translation, I thought this book simply doesn’t work. A small issue is that there are few historical inaccuracies, but that’s often the case when scientists write history of science, and that’s not the main part of the book so I would have overlooked it. As an example, we are told that Newton's apple story originated with Voltaire. Yet Newton himself mentioned the apple story to William Stukeley in 1726. He may have made it up - but he certainly originated it, not Voltaire. We are also told that ‘Galileo discovered the counterintuitive law behind a swinging o...