Skip to main content

Astrophysics for People in a Hurry – Neil deGrasse Tyson *****

When I reviewed James Binney’s Astrophysics: A Very Short Introduction earlier this year, I observed that the very word ‘astrophysics’ in a book’s title is liable to deter many readers from buying it. As a former astrophysicist myself, I’ve never really understood why it’s considered such a scary word, but that’s the way it is. So I was pleasantly surprised to learn, from Wikipedia, that this new book by Neil deGrasse Tyson ‘topped The New York Times non-fiction bestseller list for four weeks in the middle of 2017’.

Like James Binney, Tyson is a professional astrophysicist with a string of research papers to his name – but he’s also one of America’s top science popularisers, and that’s the hat he’s wearing in this book. While Binney addresses an already-physics-literate audience, Tyson sets his sights on a much wider readership. It’s actually very brave – and honest – of him to give physics such prominent billing; the book could easily have been given a more reader-friendly title such as ‘Secrets of the Universe’. But it would still have been astrophysics by stealth, because it’s only thanks to physics that we understand anything beyond our own planet. As Tyson puts it: ‘the universality of physical laws makes the cosmos a marvellously simple place’.

Although the book is new, its chapters (now suitably updated) originated over a period of many years as self-contained magazine articles. They cover a wide range of topics, from the big bang and dark matter, via the electromagnetic spectrum and the periodic table, to asteroids and exoplanets. The coverage isn’t comprehensive; some of the most obvious subjects, like stellar evolution and black holes, are barely touched on. That isn’t a problem, though. The book doesn’t set out to explain everything we know about the universe, but to show that what we do know about it, we know because of physics. That’s just as interesting, and much rarer at a popular science level.

Personally, I loved the book – and I would have loved it even more when I was 15 years old, and my knowledge of physics was largely aspirational rather than actual. In those days, the book would probably have been written by someone like Isaac Asimov – and that’s a fair comparison, because Tyson’s style is a lot like Asimov’s. It manages to be clever, engaging, witty and lucid all at the same time. I kept finding myself stopping to read bits again because they were so good. Here are three examples of the kind of thing I mean:
  • On quarks: ‘The most familiar quarks are ... well, there are no familiar quarks. Each of their six subspecies has been assigned an abstract name that serves no philological, philosophical or pedagogical purpose, except to distinguish it from the others.’
  • On dark energy: ‘When you estimate the amount of repulsive vacuum pressure that arises from the abbreviated lives of virtual particles, the result is more than 10120 times larger than the experimentally determined value of the cosmological constant. This is a stupidly large factor, leading to the biggest mismatch between theory and observation in the history of science.’
  • On the cosmic microwave background: ‘The molecule cyanogen gets excited by exposure to microwaves. If the microwaves are warmer ... they excite the molecule a little more. In the big bang model, the cyanogen in distant, younger galaxies gets bathed in a warmer cosmic background than the cyanogen in our own Milky Way galaxy. And that’s exactly what we observe (you can’t make this stuff up).’
Although the book’s aimed at beginners, I have to admit that rather spooky last point came as news to me. And it wasn’t the only thing I learned. I  never realised there was enough energy in a single cosmic ray particle to knock a golf ball across a putting green. I didn’t know thunderstorms could produce gamma rays. Or that, if we could see Jupiter’s magnetosphere, it would be several times bigger than a full Moon in the sky. 

All in all, this is a book I can heartily recommend to anyone, regardless of how much or how little they know about physics.


Hardback:  

Kindle:  
Using these links earns us commission at no cost to you


Review by Andrew May

Comments

Popular posts from this blog

Models of the Mind - Grace Lindsay *****

This is a remarkable book. When Ernest Rutherford made his infamous remark about science being either physics or stamp collecting, it was, of course, an exaggeration. Yet it was based on a point - biology in particular was primarily about collecting information on what happened rather than explaining at a fundamental level why it happened. This book shows how biologists, in collaboration with physicists, mathematicians and computer scientists, have moved on the science of the brain to model some of its underlying mechanisms. Grace Lindsay is careful to emphasise the very real difference between physical and biological problems. Most systems studied by physics are a lot simpler than biological systems, making it easier to make effective mathematical and computational models. But despite this, huge progress has been made drawing on tools and techniques developed for physics and computing to get a better picture of the mechanisms of the brain. In the book we see this from two directions

The Ten Equations that Rule the World - David Sumpter ****

David Sumpter makes it clear in this book that a couple of handfuls of equations have a huge influence on our everyday lives. I needed an equation too to give this book a star rating - I’ve never had one where there was such a divergence of feeling about it. I wanted to give it five stars for the exposition of the power and importance of these equations and just two stars for an aspect of the way that Sumpter did it. The fact that the outcome of applying my star balancing equation was four stars emphasises how good the content is. What we have here is ten key equations from applied mathematics. (Strictly, nine, as the tenth isn’t really an equation, it’s the programmer’s favourite ‘If… then…’ - though as a programmer I was always more an ‘If… then… else…’ fan.) Those equations range from the magnificent one behind Bayesian statistics and the predictive power of logistic regression to the method of determining confidence intervals and the kind of influencer matrix so beloved of social m

Grace Lindsay - Four Way Interview

Grace Lindsay is a computational neuroscientist currently based at University College, London. She completed her PhD at the Centre for Theoretical Neuroscience at Columbia University, where her research focused on building mathematical models of how the brain controls its own sensory processing. Before that, she earned a bachelor’s degree in Neuroscience from the University of Pittsburgh and received a research fellowship to study at the Bernstein Center for Computational Neuroscience in Freiburg, Germany. She was awarded a Google PhD Fellowship in Computational Neuroscience in 2016 and has spoken at several international conferences. She is also the producer and co-host of Unsupervised Thinking , a podcast covering topics in neuroscience and artificial intelligence. Her first book is Models of the Mind . Why science? I started my undergraduate degree as a neuroscience and philosophy double major and I think what drew me to both topics was the idea that if we just think rigorously enou