Skip to main content

Astrophysics: A Very Short Introduction - James Binney ****

For many readers, the very word ‘astrophysics’ is a daunting one. That’s ironic, because astronomy is one of the most popular of popular-science subjects, and it’s almost 100% applied physics. You can’t understand planetary orbits without invoking the theory of gravity; you can’t understand how stars shine without invoking nuclear fusion; you can’t understand a galaxy’s spiral arms without invoking the physics of waves. Yet apart from a few exotic topics like black holes and dark matter, the crucial role played by physics is all too often glossed over in popular astronomy books.

So this ‘Very Short Introduction’ is a welcome antidote to all that. It would be ideal for a reader who is already keen on astronomy, and has some basic school-level physics, who wants to see how the two fit together. Most amateur astronomers will have heard of ‘main sequence stars’ and the Hertzsprung–Russell diagram, but this book shows you how the mysteries of stellar evolution all have their roots in solid physical principles like gravitation, nuclear fusion, heat convection and black-body radiation. 

Another thing that comes across is that, although the universe is very big, there really aren’t that many laws of physics. So the same physics gets used over and over at different scales – with, for example, the same principle of ‘conservation of angular momentum’ shaping the structure of the solar system, black hole accretion discs and entire galaxies. Other areas of physics, which may not be very prominent here on Earth, really come into their own in an astronomical context. This applies most obviously to relativity – both the special and general theories – which can explain a whole range of phenomena from the stability of the solar system to cosmic rays and gravitational lenses.

A short, wide-ranging book like this is always going to lack depth, but that’s not a bad thing with a potentially heavy subject like this one – especially when, as in this case, the author is a professor of astrophysics. Fortunately James Binney doesn’t try to blind readers with science, but he doesn’t talk down to them either. That’s probably a good thing, too, since I suspect the very title of the book is going to have a self-selection effect on its readership. The sort of people who buy this book won’t want to be talked down to.

A few months ago it was mentioned to me that these OUP ‘Very Short Introduction’ books tend to be dry summaries rather than narrative-driven. That’s pretty much the case here. Essentially the author presents a long list of facts, rather than posing a series of rhetorical questions (of the sort the reader might have) and then answering them, or showing how they were tackled in a historical context. I think I might have liked that better, but I can’t mark the book down on that account because it’s obvious that it is simply sticking to the house style for the series. Even so, it’s an enjoyably easy read, and a long way from being a stodgy textbook – I mean, what textbook would tell you the Galaxy contains ‘zillions of dark-matter particles’?


Paperback:  

Kindle 
Using these links earns us commission at no cost to you
Review by Andrew May

Comments

Popular posts from this blog

Philip Ball - How Life Works Interview

Philip Ball is one of the most versatile science writers operating today, covering topics from colour and music to modern myths and the new biology. He is also a broadcaster, and was an editor at Nature for more than twenty years. He writes regularly in the scientific and popular media and has written many books on the interactions of the sciences, the arts, and wider culture, including Bright Earth: The Invention of Colour, The Music Instinct, and Curiosity: How Science Became Interested in Everything. His book Critical Mass won the 2005 Aventis Prize for Science Books. Ball is also a presenter of Science Stories, the BBC Radio 4 series on the history of science. He trained as a chemist at the University of Oxford and as a physicist at the University of Bristol. He is also the author of The Modern Myths. He lives in London. His latest title is How Life Works . Your book is about the ’new biology’ - how new is ’new’? Great question – because there might be some dispute about that! Many

The Naked Sun (SF) - Isaac Asimov ****

In my read through of all six of Isaac Asimov's robot books, I'm on the fourth, from 1956 - the second novel featuring New York detective Elijah Baley. Again I'm struck by how much better his book writing is than that in the early robot stories. Here, Baley, who has spent his life in the confines of the walled-in city is sent to the Spacer planet of Solaria to deal with a murder, on a mission with political overtones. Asimov gives us a really interesting alternative future society where a whole planet is divided between just 20,000 people, living in vast palace-like structures, supported by hundreds of robots each.  The only in-person contact between them is with a spouse (and only to get the distasteful matter of children out of the way) or a doctor. Otherwise all contact is by remote viewing. This society is nicely thought through - while in practice it's hard to imagine humans getting to the stage of finding personal contact with others disgusting, it's an intere

The Blind Spot - Adam Frank, Marcelo Gleiser and Evan Thompson ****

This is a curate's egg - sections are gripping, others rather dull. Overall the writing could be better... but the central message is fascinating and the book gets four stars despite everything because of this. That central message is that, as the subtitle says, science can't ignore human experience. This is not a cry for 'my truth'. The concept comes from scientists and philosophers of science. Instead it refers to the way that it is very easy to make a handful of mistakes about what we are doing with science, as a result of which most people (including many scientists) totally misunderstand the process and the implications. At the heart of this is confusing mathematical models with reality. It's all too easy when a mathematical model matches observation well to think of that model and its related concepts as factual. What the authors describe as 'the blind spot' is a combination of a number of such errors. These include what the authors call 'the bifur