Skip to main content

Before Time Began - Helmut Satz **

This is an odd little book. The aim seems to be to provide more detail about the most widely accepted cosmological theories than we usually get in a popular science title, which to some extent it does - but in a way that, for me, fails the Feynman test (more on that in a moment).

In his introduction, Helmut Satz tell us that not everyone agrees with some of the things he is going to describe, but I'm not sure that's good enough. For example, we are presented with the full current inflation theory as if it were fact, yet it seems to be going through a whole lot of uncertainty at the time of writing. It's fine to present the best accepted theory, but when there is significant concern about it, it's important to at least outline why it has problems and where we go from here.

In content terms, it's hard to fault what Satz covers - it gives us everything from a description of spontaneous symmetry breaking to the Higgs field, all with significantly more detail than you might normally expect. There's plenty too, for example, on nucleosynthesis and the cosmic microwave background. The problem I have with this book is the way this is presented.

There's one trivial issue. I hate the way the book is structured. It treats all the headings as if they were part of the body text. This totally misunderstands the point of headings, which is to provide an indicator of a clear break. What's more, readers don't always read the text of a heading, so end up with disjointed text. It's ironic that a book about the structure of the universe so messes up the structure of a book.

The bigger issue, though, is that Feynman test. The great American physicist Richard Feynman famously made the distinction between knowing something and knowing the name of something. Feynman pointed out that his dad taught him as a kid when looking at birds: 'You can know the name of that bird in all the languages of the world, but when you’re finished, you’ll know absolutely nothing whatever about the bird. You’ll only know about humans in different places, and what they call the bird. So let’s look at the bird and see what it’s doing—that’s what counts.'

I got exactly that feeling here - we're told the name of everything but don't get any feel for what's really happening or why it's happening. Take transitions and spontaneous symmetry breaking - there is a good example made using magnetisation (much clearer than some of the analogies I've seen) - but the phenomenon is just described. We get no idea why this is happening. Elsewhere analogies are used, but not necessarily very effectively. In describing the action of the Higgs field we are told it's a bit like the way a snowball gains mass by rolling through snow. But the snow it rolls through is the same material and itself has mass - the snowball is just accreting mass - so as an analogy it provides little benefit.

I don't think this book is a waste of time. It will fill in some gaps for those who only have a conventional popular science view of cosmology and may encourage some to move onto the more mathematical material. But I don't think it really achieves what it sets out to do.

Hardback:  
 
Kindle:  
Using these links earns us commission at no cost to you



Review by Brian Clegg

Comments

  1. Thanks. Yet another occasion where you have saved me a lot of time and frustration. Keep up the good work

    ReplyDelete

Post a Comment

Popular posts from this blog

The Meteorite Hunters - Joshua Howgego *****

This is an extremely engaging read on a subject that everyone is aware of, but few of us know much detail about. Usually, if I'm honest, geology tends to be one of the least entertaining scientific subjects but here (I suppose, given that geo- refers to the Earth it ought to be astrology... but that might be a touch misleading). Here, though, there is plenty of opportunity to capture our interest. The first part of the book takes us both to see meteorites and to hear stories of meteorite hunters, whose exploits vary from erudite science trips to something more like an Indiana Jones outing. Joshua Howgego takes us back to the earliest observations and discoveries of meteorites and the initial doubt that they could have extraterrestrial sources, through to explorations of deserts and the Antarctic - both locations where it tends to be easier to find them. I, certainly, had no idea about the use of camera networks to track incoming meteors, which not only try to estimate where they wi...

Phenomena - Camille Juzeau and the Shelf Studio ****

I am always a bit suspicious of books that are highly illustrated or claim to cover 'almost everything' - and in one sense this is clearly hyperbole. But I enjoyed Phenomena far more than I thought I would. The idea is to cover 125 topics with infographics. On the internet these tend to be long pages with lots of numbers and supposedly interesting factoids. Thankfully, here the term is used in a more eclectic fashion. Each topic gets a large (circa A4) page (a few get two) with a couple of paragraphs of text and a chunky graphic. Sometimes these do consist of many small parts - for example 'the limits of the human body' features nine graphs - three on sporting achievements, three on biometrics (e.g. height by date of birth) and three rather random items (GNP per person, agricultural yields of various crops and consumption of coal). Others have a single illustration, such as a map of the sewers of Paris. (Because, why wouldn't you want to see that?) Just those two s...

Against the Odds - John Gribbin and Mary Gribbin ****

The number of women working in STEM subjects has expanded dramatically, but as John and Mary Gribbin make clear, in the history of science this is a very recent occurrence. Here, they bring us the stories of 12 women, from Eunice Newton Foote, born in 1819, to Vera Rubin, born in 1928 - effectively covering nearly 200 years in that Rubin died as recently as 2016. There are some names that will already be familiar from popular science histories (and deservedly so). You will find, for instance, Dorothy Hodgkin and Rosalind Franklin represented. But there are plenty like Foote that few will have come across, including Inge Lehmann, Chien-Sung Wu and Lucy Slater. While arguably Foote is there primarily to demonstrate the difficulties she faced (her discovery of an aspect of greenhouse gas behaviour was independently bettered within weeks), the rest have all made significant discoveries or developments against the odds and often missed out the recognition the deserved. The most prominent ob...