Skip to main content

The Primacy of Doubt - Tim Palmer *****

This is quite possibly the best popular science book I've ever read (and I've read many hundreds). To describe what Tim Palmer, a physicist turned meteorologist, does in simple terms does not do it justice. But essentially he explores the nature of (mathematically) chaotic systems and shows how we can deal better with uncertainty, even using his expertise to propose a different way to look at the lack of local reality in quantum physics.

This is interesting stuff anyway, but what is astounding is the way that Palmer rattles through a series of topics that are quite difficult to get your head around and, in several diverse cases, gives the most approachable explanation of the topic I've ever seen.

I'm not saying this book is an easy read, by the way. You do have to think about what you are reading, and I had to go back over a couple of sections to make sure it sunk in. But it is so rewarding of the effort.

In terms of this broad enlightening nature, the first of the three sections in the book stands out head and shoulders above the rest. Palmer starts by exploring chaos and gives the best explanation of the behaviour of chaotic systems, state space and attractors I've come across. Then he throws in Cantor sets, then shows the relationship of weather forecasts to all this, and introduces p-adic numbers (arguably the only bit that could have been better explained). He then shows graphically (literally, not metaphorically) how the introduction of noise can make models of chaotic systems work better. Finally in this section, he takes on quantum uncertainty, with one of the only explanations of the use of Bell's inequality I've ever seen that is at least vaguely comprehensible.

I don't usually go into that much detail in a review, but just wanted to show how much is crammed into the first 80 or so pages.

In the second section, Palmer addresses the use of Monte Carlo methods and ensembles in making at least partly successful predictions of chaotic systems, such as the weather, the climate and pandemics. Usually, the applications of the theory are the most interesting bits of a book, but somehow this isn't quite as engaging as the theory in the first section, though things really liven up when we get onto economics, and how economists are stuck in the fairly useless state meteorologists were before the great storm of 1987, when they used single-run forecasts, rather than ensembles. He also shows fairly bluntly that economists have failed in the development of the kind of models that can handle a chaotic system like the economy.

Finally, in the third section, Palmer addresses the big picture. He starts with an alternative interpretation of quantum theory that effectively enables hidden variables, using an approach that he describes as involving 'counterfactual indefiniteness', a concept he calls the 'cosmological invariant set' and invariant set theory. How much this will appeal probably depends how you feel about quantum interpretations, or get worried about the idea that until a quantum system interacts with the outside world it doesn't have real values for things like the location of particles. This part felt a bit hand-wavy, partly, I think because it needed too much of the mathematics behind it (which we sensibly don't see) to get a handle on it.

To end this more speculative section, Palmer takes on things like consciousness, free will and God - not bad going for a relatively short book. Finishing The Primacy of Doubt is like getting off one of those exciting roller coaster rides, when your immediate inclination is to think 'I want to do that again, but I'll have a bit of a break first.' I will be reading this book again, without doubt. Remarkable.

Hardback:   
Using these links earns us commission at no cost to you
Review by Brian Clegg - See all of Brian's online articles or subscribe to a weekly digest for free here

Comments

  1. The pandemic chapter has a few errors. I can't remember ever seeing a SIR model in which the R included the dead. If exponential growth was rapid I would be very happy with the balance of my savings account. Exponential growth of epidemics is debunked by Farr's Law of 1840. In 1927 Kermack and McKendrick showed logistic growth.

    Now to read the rest of the book.

    ReplyDelete
  2. I've finally finished the book and think it is a very worthwhile read that has some significant omissions.

    He discusses CovidSim which had its source code released after John Carmack (of Doom fame) had made its output for multi-threaded runs deterministic thus allowing regression tests. A regression tests fails for one of two reasons - either you introduce a bug or fix a bug. What it didn't have, and what the book doesn't mention about this or any other code, is validation tests. Such tests are used by commercial engineering codes to assure their customers that the implementation of the physical models do not have bugs. The author expresses doubt in some of the results of the models but never the model implementation.

    Continuing with epidemiology the standard SIR model has been extended to be stochastic in a number of ways. Several of which are by making the reproduction rate normally distributed. This is the usual lazy assumption by modellers and is debunked by a derivation from first principles that shows it is logit-normally distributed. The author references various models in which he has added noise but never mentions which distribution was used and how that was determined which raises questions over the subsequent conclusions that he draws.

    He seems to rate the Stern Review which I believe to have been a waste of tax payers money on the assumption that its software was seemingly never made available to be updated. The discussion of cost-loss models for tying economics to climate reminded me of Pascal's wager.

    ReplyDelete

Post a Comment

Popular posts from this blog

The Antigravity Enigma - Andrew May ****

Antigravity - the ability to overcome the pull of gravity - has been a fantasy for thousands of years and subject to more scientific (if impractical) fictional representation since H. G. Wells came up with cavorite in The First Men in the Moon . But is it plausible scientifically?  Andrew May does a good job of pulling together three ways of looking at our love affair with antigravity (and the related concept of cancelling inertia) - in science fiction, in physics and in pseudoscience and crankery. As May points out, science fiction is an important starting point as the concept was deployed there well before we had a good enough understanding of gravity to make any sensible scientific stabs at the idea (even though, for instance, Michael Faraday did unsuccessfully experiment with a possible interaction between gravity and electromagnetism). We then get onto the science itself, noting the potential impact on any ideas of antigravity that come from the move from a Newtonian view of a...

The World as We Know It - Peter Dear ***

History professor Peter Dear gives us a detailed and reasoned coverage of the development of science as a concept from its origins as natural philosophy, covering the years from the eighteenth to the twentieth century. inclusive If that sounds a little dry, frankly, it is. But if you don't mind a very academic approach, it is certainly interesting. Obviously a major theme running through is the move from largely gentleman natural philosophers (with both implications of that word 'gentleman') to professional academic scientists. What started with clubs for relatively well off men with an interest, when universities did not stray far beyond what was included in mathematics (astronomy, for instance), would become a very different beast. The main scientific subjects that Dear covers are physics and biology - we get, for instance, a lot on the gradual move away from a purely mechanical views of physics - the reason Newton's 'action at a distance' gravity caused such ...

It's On You - Nick Chater and George Loewenstein *****

Going on the cover you might think this was a political polemic - and admittedly there's an element of that - but the reason it's so good is quite different. It shows how behavioural economics and social psychology have led us astray by putting the focus way too much on individuals. A particular target is the concept of nudges which (as described in Brainjacking ) have been hugely over-rated. But overall the key problem ties to another psychological concept: framing. Huge kudos to both Nick Chater and George Loewenstein - a behavioural scientist and an economics and psychology professor - for having the guts to take on the flaws in their own earlier work and that of colleagues, because they make clear just how limited and potentially dangerous is the belief that individuals changing their behaviour can solve large-scale problems. The main thesis of the book is that there are two ways to approach the major problems we face - an 'i-frame' where we focus on the individual ...