Skip to main content

Dario Floreano and Nicola Nosengo - Five Way Interview

Dario Floreano is Director of the Laboratory of Intelligent Systems at the Swiss Federal Institute of Technology Lausanne (EPFL). He is the coauthor of Evolutionary Robotics and Bio-Inspired Artificial Intelligence (both published by the MIT Press). Nicola Nosengo is a science writer and science communicator at EPFL. His work has appeared in Nature, the Economist, Wired, and other publications, and he is the Chief Editor of Nature Italy. Their recent book is Tales from a Robotic World.

Why robotics?

Robotics is where Artificial Intelligence becomes tangible and personal. You may forget about the AI that powers your online searches, but it is hard to ignore the physical presence and motion of robots next to you. Robots have transformed factories, they are widely used in warehouses, hospitals, even homes - at least in the form of vacuum cleaners. Drones are becoming ubiquitous. And yet there is so much more that robots could do for us, and so many more places where they could prove useful, if they were more autonomous and capable of learning from their experiences and from us, if they could understanding the meaning of what they see and what they hear, if their mechanical bodies could be more adaptable and life-like. Thanks to the convergence of engineering, neuroscience, materials science, robotics is now entering a new phase, and that makes it one of the most exciting fields of science now.

Why this book?

Surprisingly, physical robots are largely neglected in the media and in books. Often, when people talk or write about "robots" nowadays they really talk of software-based AI, algorithms and data. Indeed, AI has had amazing successes lately, and it tends to overshadow physical robotics, which may seem to lag behind. In fact, making robots intelligent is harder than making intelligent data-crunching algorithms, but there are many recent advances that will make robots more capable and pervasive in the near future, and that deserve to be known by the public. With this book, we wanted to fill this gap and to show where robotics research is now. But we also understand that people want to know how all of that research will make a difference in their lives, which is why we stuck our neck out and described concrete future scenarios made possible by current-day research.

Despite all the promises, robots (and even driverless cars, particularly on winding European roads) always seem to be behind promised timescales. Why do we underestimate how long it takes for these technologies to mature?

Part of the reason is that, when it comes to predicting the pace of technological progress, we have been spoiled by what happened in computation, where computing power has grown exponentially according to what is usually called Moore's law, and the performances of all machines that rely on microchip have grown as a consequence. Many people have made the mistake of thinking that progress in robotics is a matter of increasing computing power, as it is the case with computing. But technologies that work with the physical world are more complicated than those that work with data - and that includes driverless cars, that are in effect robots that have to move in unpredictable environments and among people. They require not just improvements in algorithms and computing chips, but also in material science, mechanical engineering, sensor development, social interaction, cognitive science, and much more. Creating a new generation of robots requires new design and control principles, and a much closer collaboration with biologists, neuroscientists, and psychologists than in classical engineering or computer science. 

What’s next?

It would be fun and instructive to turn the book into a documentary series or a movie. Robots deserve to be seen live!

What’s exciting you at the moment?

N. I don't know if 'exciting' is the right word, but the conversion of our economy away from fossil fuels and towards renewable energy is definitely the defining challenge of our era, one that will require a lot of new research combined with a lot of social innovation. It will be exciting to watch it happen over the next couple of decades, hoping that there is enough political will for it. By the way, robotics will have to be part of this transformation. We can't flood the world with yet more machines and make them energy-hungry, or harmful for the environment. The robots of the future will have to be sustainable, or they won't be at all.   

D. My research projects include edible robots and robotic food; bird-inspired robots capable of moving in the air, ground, forests, and water; human augmentation by robotic swarms, and evolutionary robots.

Interview by Brian Clegg - See all of Brian's online articles or subscribe to a digest free here

Comments

Popular posts from this blog

Phenomena - Camille Juzeau and the Shelf Studio ****

I am always a bit suspicious of books that are highly illustrated or claim to cover 'almost everything' - and in one sense this is clearly hyperbole. But I enjoyed Phenomena far more than I thought I would. The idea is to cover 125 topics with infographics. On the internet these tend to be long pages with lots of numbers and supposedly interesting factoids. Thankfully, here the term is used in a more eclectic fashion. Each topic gets a large (circa A4) page (a few get two) with a couple of paragraphs of text and a chunky graphic. Sometimes these do consist of many small parts - for example 'the limits of the human body' features nine graphs - three on sporting achievements, three on biometrics (e.g. height by date of birth) and three rather random items (GNP per person, agricultural yields of various crops and consumption of coal). Others have a single illustration, such as a map of the sewers of Paris. (Because, why wouldn't you want to see that?) Just those two s...

The Bright Side - Sumit Paul-Choudhury ***

When I first saw The Bright Side (the subtitle doesn't help), I was worried it was a self-help manual, a format that rarely contains good science. In reality, Sumit Paul-Choudhury does not give us a checklist for becoming an optimist or anything similar - and there is a fair amount of science content. But to be honest, I didn't get on very well with this book. What Paul-Choudhury sets out to do is to both identify what optimism is and to assess its place in a world where we are beset with big problems such as climate change (which he goes into in some detail) that some activists position as an existential threat. This is all done in a friendly, approachable fashion. In that sense it's a classic pop-psychology title. For me, Paul-Choudhury certainly has it right about the lack of logic of extreme doom-mongers, such as Extinction Rebellion and teenage climate protestors, and his assessment of the nature of optimism seems very reasonable, if presented at a fairly overview leve...

Rakhat-Bi Abdyssagin Five Way Interview

Rakhat-Bi Abdyssagin (born in 1999) is a distinguished composer, concert pianist, music theorist and researcher. Three of his piano CDs have been released in Germany. He started his undergraduate degree at the age of 13 in Kazakhstan, and having completed three musical doctorates in prominent Italian music institutions at the age of 20, he has mastered advanced composition techniques. In 2024 he completed a PhD in music at the University of St Andrews / Royal Conservatoire of Scotland (researching timbre-texture co-ordinate in avant- garde music), and was awarded The Silver Medal of The Worshipful Company of Musicians, London. He has held visiting affiliations at the Universities of Oxford, Cambridge and UCL, and has been lecturing and giving talks internationally since the age of 13. His latest book is Quantum Mechanics and Avant Garde Music . What links quantum physics and avant-garde music? The entire book is devoted to this question. To put it briefly, there are many different link...