Skip to main content

Closing the Gap - Vicky Neale ***

Every now and then a working scientist will write a superb popular science book, but it's significantly rarer that mathematicians stray beyond recreational maths without becoming impenetrable, so I was cheering as I read the first few chapters of Vicky Neale's Closing the Gap about the attempt to prove the 'twin primes conjecture' that infinitely many pairs of prime numbers just two apart.

I'd say those first few chapters are far and above the best example I've seen of a mathematician getting across the essence of pure maths and why it appeals to them. Unfortunately, though, from then on the book gets bogged down in the problem that almost always arises, that what delights and fascinates mathematicians tends to raise a big 'So what?' in the outside world.

Neale interlaces attempts getting closer and closer to the conjecture, working down from a proof of primes several millions apart to under 600, adding in other, related mathematical work, for example on building numbers from squares and combinations of primes, but increasingly it's a frustrating read, partially due to necessary over-simplification. Time and again we're told about something, but effectively that it's too complicated for us to understand (or we'll come back to it in a later chapter), and this doesn't help make the subject approachable. I understand that a particular mathematical technique may be too complicated to grasp, but if so, I'm not sure there's any point telling us about it.

Part of the trouble is, most of us can only really get excited about maths if it has an application - and very little of what's described here does as yet. I'm not saying that pure mathematics is a waste of time. Not at all. Like all pure research, you never know when it will prove valuable. Obscure sounding maths such as symmetry groups, imaginary numbers and n-dimensional space have all proved extremely valuable to physics. It's just that while the topic remain abstract, it can be difficult to work up much enthusiasm for it.

At the beginning of the book, Neale draws a parallel with rock climbing, and that we are to the mathematicians scaling the heights like someone enjoying a stroll below and admiring their skill. And, in a way, this analogy works too well. We can certainly be impressed by that ability - but a lot of us also see rock climbing as a waste of time and consider it as interesting if you aren't actually doing it as watching paint dry.

It's not impossible to make obscure mathematics interesting - Simon Singh proved this with Fermat's Last Theorem. But that was achieved with writing skill by spending most of the book away from the obscure aspects. I'm beginning to suspect that making high level mathematics approachable is even more difficult than doing that maths in the first place.


Hardback:  

Kindle:  



Review by Brian Clegg

Comments

Popular posts from this blog

Where are the chemistry popular science books?

by Brian Clegg
There has never been more emphasis on the importance of public engagement. We need both to encourage a deeper interest in science and to counter anti-scientific views that seem to go hand-in-hand with some types of politics. Getting the public interested in science both helps recruit new scientists of the future and spreads an understanding of why an area of scientific research deserves funding. Yet it is possible that chemistry lags behind the other sciences in outreach. As a science writer, and editor of this website, I believe that chemistry is under-represented in popular science. I'd like to establish if this is the case, if so why it is happening - and what can be done to change things. 


An easy straw poll is provided by the topic tags on the site. At the time of writing, there are 22 books under 'chemistry' as opposed to 97 maths, 126 biology and 182 physics. The distribution is inevitably influenced by editorial bias - but as the editor, I can confirm …

Make, Think, Imagine - John Browne ***

When you read a politician's memoirs you know that, nine times out of ten, it won't really quite work, because the message can't carry a whole book. It's reminiscent of the old literary agent's cry of 'Is it a book, or is it an article?' It's not that there aren't a lot of words in such tomes. It's almost obligatory for these books to be quite chunky. But it's a fair amount of work getting through them, and you don't feel entirely satisfied afterwards. Unfortunately, that's rather how John Browne (former head of oil giant BP)'s book comes across.

It's not that the central thread is unimportant. It used to be the case, certainly in the UK, that science, with its roots in philosophy and the pursuit of knowledge, was considered far loftier than engineering, growing out of mechanical work and the pursuit of profit. There is, perhaps, still a whiff of this around in some circles - so Browne's message that engineering has been…

Bloom - Ruth Kassinger ***

There is much fascinating material in this chunky book by Ruth Kassinger. It may be my total ignorance of biology and everyone else knows these things, but I learnt so much - for example that seaweed is algae and not a plant, about algae's role in the development of land plants, about the algae in lichen and its contribution to coral reefs.

The book is divided into four broad sections: on the origins and development of algae, on algae (and particularly seaweed) as food, on making use of algae, for example, for biofuel, and on algae and climate change, particularly the bleaching of coral and algal blooms. This is all done in a very approachable writing style, mixing descriptive material that is never over-technical with narrative often featuring visits to different locations and to talk to a range of experts from those who study to algae to those who cook them.

There are two problems though. Firstly, the book is too long at 380 pages. Each section could do with a trim, but this wa…