Skip to main content

Roger Highfield - Stephen Hawking: genius at work interview

Roger Highfield OBE is the Science Director of the Science Museum Group. Roger has visiting professorships at the Department of Chemistry, UCL, and at the Dunn School, University of Oxford, is a Fellow of the Academy of Medical Sciences, and a member of the Medical Research Council and Longitude Committee. He has written or co-authored ten popular science books, including two bestsellers. His latest title is Stephen Hawking: genius at work.

Why science?

There are three answers to this question, depending on context: Apollo; Prime Minister Margaret Thatcher, along with the world’s worst nuclear accident at Chernobyl; and, finally, Nullius in verba.

Growing up I enjoyed the sciencey side of TV programmes like Thunderbirds and The Avengers but became completely besotted when, in short trousers, I gazed up at the moon knowing that two astronauts had paid it a visit. As the Apollo programme unfolded, I became utterly obsessed. Today, more than half a century later, the moon landings are if anything even more amazing. When I see kids looking at Apollo 10 in the Science Museum, I know they find it hard to believe that it took Eugene Cernan, John Young and Thomas Stafford within a few miles of the moon’s surface: this battered, burnt craft has become an almost magical object.

Everyone should look to science in this post truth era because, as the Royal Society puts it, Nullius in verba. The scientific culture of scepticism, testing and provisional consensus-forming is without doubt the most significant achievement of our species. The scientific method has changed life, culture, and everything, and set the stage for a reassessment of our place in the universe. It is the mother of all invention.

Finally, when it comes to why I write about science, it is thanks to my doctoral supervisor at Oxford, Bob Thomas, who was struck by my work on the university newspaper (with the late, great Paul Carter, who coauthored an Einstein biography with me) and suggested I try journalism as a career: Mrs Thatcher’s Government had slashed the science base and the prospects in university research looked dismal. He was kind enough to say I could take up a postdoc role, bouncing neutrons off soap bubbles, if this gamble did not work out. Fortunately, it did and my big break came in the spring of 1986, while working for Nuclear Engineering International, when I was imprisoned with Scandinavian journalists in the canteen of the Forsmark nuclear power station after an apparent nuclear leak: a few hours later, we became the first to learn that an analysis of the radionuclides showed the ‘leak’ was the fallout from a Soviet designed RBMK plant. I was the first British journalist to know about Chernobyl and that (along with writing a few oped articles) persuaded Max Hastings to give me a job later that year at The Daily Telegraph, when it was still in Fleet Street, which really launched my career in science writing.

What do you think will be Stephen Hawking’s lasting scientific legacy?

On his sixtieth birthday, Stephen Hawking told me that he wanted his life in science to be represented by an equation on his tombstone ( you can see it in Westminster Abbey). This mathematical expression shows the temperature of so-called ‘Hawking radiation’ given off by a (non-rotating) black hole, a surprising yet beautiful relationship that connects thinking about the very small (quantum mechanics) with the very big (relativity) along with the science of heat and work (thermodynamics). This was a feat of unification that would have impressed Einstein. The prediction is such a beautiful result that it also wowed John Wheeler, who had popularised terms such as black hole (previously they were called ‘frozen stars’) and wormhole and, according to Hawking himself, was the 'hero of the black hole story.' Wheeler said that just talking about this little equation was like 'rolling candy on the tongue.' A testament to its importance is that it still guides the ongoing search for a more complete theory of quantum gravity. Indeed, Hawking radiation is the one result in the continuing attempt to reconcile quantum mechanics and gravity that is accepted by the entire community of physicists working on the subject.

Science writing has generally moved away from the ‘lone genius’ approach to scientific biographies: does Hawking’s celebrity make him an exception?

Science is deeply collaborative and there are lots of examples in Stephen Hawking’s story, such as his pioneering work on black holes and the universe with Roger Penrose, who kindly wrote the foreword of my book, or how he built on the efforts of Jacob Bekenstein, a doctoral student at Princeton University supervised by John Wheeler, to discover Hawking radiation. A brilliant anthropologist [Helene Mialet] who studied Hawking, remarks that despite his motor neuron disease, the way he did science was typical of the early 21st century: Principal Investigators of his stature rarely worked out the nitty-gritty, rather steering the work of students and collaborators, though his fading voice, then his voice synthesiser, meant he communicated through facial expressions and gnomic utterances.

However, I do think Hawking is an exception because he was remarkable in several ways which combined to make him unique: his science dealt with the biggest questions of all, such as the origins of time and space; he was a brilliant communicator, with A Brief History of Time selling millions of copies and inspiring many people, not least my curatorial colleague Juan-Andres Leon; and he stubbornly wrung the most out of life, while never complaining, despite being debilitated by motor neuron disease. To appreciate Hawking, you really must take on board all three facets. As Lord Rees, his old friend and Astronomer Royal, told me: A Brief History of Time was hugely influential because it tapped into the public fascination with Hawking the man, how on Earth he managed to write it, and the idea of his imprisoned mind that could still roam the entire universe.

What, for you, is the most interesting object in Hawking’s study, and why?

Perhaps the most poignant is a cream-coloured jacket, which he wore in his third year at Oxford University when he became a coxswain, thanks to his strong voice, light weight and daredevil attitude.  There is a note attached to say he wore the jacket when he was thrown into the river, a victory tradition that only a year or two later would have been inconceivable for him to perform as his motor neuron disease took its toll. No wonder he kept it as a memento.

But, if you stood in his office, the most intriguing object in plain view was a blackboard adorned with strange doodles, cartoons, and equations.  To the uninitiated visitor, the graffiti, puns, and in-jokes were mostly meaningless, but this enigmatic blackboard had a special place in Hawking’s heart. The chalk scribbles hold a record of a meeting Hawking had organized in 1980, the Nuffield Workshop in Cambridge on Superspace and Supergravity.

Every time the delegates hit an impasse, they would doodle on the blackboard. Many of the jokes refer to the co-organizer of the Nuffield conference, Martin Roček, who was born in Czechoslovakia.  Roček is depicted as a shaggy Martian with antennae, bellowing, 'IT DOEZ WORK!!!' Some of the scribbles are straightforward: ‘Czech’ refers to Martin, of course.  Others show mysterious creatures, representing the group of mathematical functions or operators known as ‘Vielbein’ – vielbein being German for many-leg. Even though the overarching message of this blackboard is that physics back in 1980 was not as advanced as Stephen Hawking had thought during that heady meeting, it provides a vivid snapshot of physics in action.

What’s next for you?

The agenda of my past three books was driven by science: Stephen Hawking: Genius at Work (cosmology, black holes and so on); Virtual You (the personalised and predictive power of digital twins in medicine) and The Dance of Life (stembryos, IVF and reproductive biology). My most popular science books have been inspired by what the public find fascinating: Harry Potter and Christmas. For my eleventh book, I hope to find a topic that is just as fun, quirky, and intriguing.


Comments

Popular posts from this blog

Phenomena - Camille Juzeau and the Shelf Studio ****

I am always a bit suspicious of books that are highly illustrated or claim to cover 'almost everything' - and in one sense this is clearly hyperbole. But I enjoyed Phenomena far more than I thought I would. The idea is to cover 125 topics with infographics. On the internet these tend to be long pages with lots of numbers and supposedly interesting factoids. Thankfully, here the term is used in a more eclectic fashion. Each topic gets a large (circa A4) page (a few get two) with a couple of paragraphs of text and a chunky graphic. Sometimes these do consist of many small parts - for example 'the limits of the human body' features nine graphs - three on sporting achievements, three on biometrics (e.g. height by date of birth) and three rather random items (GNP per person, agricultural yields of various crops and consumption of coal). Others have a single illustration, such as a map of the sewers of Paris. (Because, why wouldn't you want to see that?) Just those two s...

The Bright Side - Sumit Paul-Choudhury ***

When I first saw The Bright Side (the subtitle doesn't help), I was worried it was a self-help manual, a format that rarely contains good science. In reality, Sumit Paul-Choudhury does not give us a checklist for becoming an optimist or anything similar - and there is a fair amount of science content. But to be honest, I didn't get on very well with this book. What Paul-Choudhury sets out to do is to both identify what optimism is and to assess its place in a world where we are beset with big problems such as climate change (which he goes into in some detail) that some activists position as an existential threat. This is all done in a friendly, approachable fashion. In that sense it's a classic pop-psychology title. For me, Paul-Choudhury certainly has it right about the lack of logic of extreme doom-mongers, such as Extinction Rebellion and teenage climate protestors, and his assessment of the nature of optimism seems very reasonable, if presented at a fairly overview leve...

Rakhat-Bi Abdyssagin Five Way Interview

Rakhat-Bi Abdyssagin (born in 1999) is a distinguished composer, concert pianist, music theorist and researcher. Three of his piano CDs have been released in Germany. He started his undergraduate degree at the age of 13 in Kazakhstan, and having completed three musical doctorates in prominent Italian music institutions at the age of 20, he has mastered advanced composition techniques. In 2024 he completed a PhD in music at the University of St Andrews / Royal Conservatoire of Scotland (researching timbre-texture co-ordinate in avant- garde music), and was awarded The Silver Medal of The Worshipful Company of Musicians, London. He has held visiting affiliations at the Universities of Oxford, Cambridge and UCL, and has been lecturing and giving talks internationally since the age of 13. His latest book is Quantum Mechanics and Avant Garde Music . What links quantum physics and avant-garde music? The entire book is devoted to this question. To put it briefly, there are many different link...