Skip to main content

Tim Palmer - Five Way Interview

Tim Palmer is a Royal Society Research Professor in the department of physics at the University of Oxford. He spent much of his career working on the predictability and dynamics of weather and climate, developing probabilistic ensemble prediction systems across a range of weather and climate timescales. 
He is a Fellow of the Royal Society and an International Member of the US National Academy of Sciences. Amongst other awards, he has won the Institute of Physics Dirac Gold Medal, and the top medals of the American and European Meteorological Societies. His book The Primacy of Doubt is published by Oxford University Press in the UK and Basic Books in the US.

Why science? 

I love the idea of studying things that at one level could tell us about the meaning of life, the universe and everything, and at the other end of the spectrum is of practical importance to ordinary people around the world. This is science at its best, and I hope my book shows why. As American physicist Robert Oppenheimer said: 'The history of science is rich in example of the fruitfulness of bringing two sets of techniques, two sets of ideas, developed in separate contexts for the pursuit of new truth, into touch with one another.'

Why this book?

It was a challenge to myself to try to write something coherent that encompassed my various scientific interests over my research career, that could be read by the layperson. The two themes that underpin everything I’ve worked on over the years, from black holes to climate change, are uncertainty and nonlinearity (a nonlinear system is one whose outputs are not in direct proportion to its inputs). I worked hard to connect the different notions of uncertainty and nonlinearity discussed in the book into a coherent whole: from noise in transistors, to the predictability of weather, to the idea that the universe as a whole may be a chaotic system, completely overturning the notion of quantum uncertainty as it is conventionally understood and giving us fresh perspectives on age-old conundrums like free will and consciousness. I hope the reader will be exhilarated by the idea that all these different topics, some of fundamental importance, others of practical importance, come together in a unified way. This is really what makes science so enjoyable and what made writing the book so enjoyable. 

What are the implications of your model for quantum physics?

I think the most important thing is that it suggests that a deeper understanding of the laws of nature may not be found by probing smaller and smaller scales - something we call 'methodological reductionism.' Indeed, the real breakthrough in formulating a unified theory of gravitational and quantum physics may come from understanding the structure of the universe on the largest scales. (A less fundamental consequence, though one of practical significance, is that it may not be possible, even in principle, to construct noise-free quantum computers with more than a couple of hundred qubits.) 

What’s next?

As far as book writing is concerned, I would like to write a second book focussing on this idea that the laws of physics may be much more holistic than we physicists normally acknowledge. The wonderful thing about this topic is that it will allow me to cover a vast range of ideas in mathematics and fundamental physics, which I’d love to try to explain to the general reader.  

What’s exciting you at the moment? 

On the climate front, I want to continue pushing for an international 'CERN for Climate Change' as I think this is super important if we are to really be confident about the regional impacts of climate change. I only need a couple of hundred million a year to make it happen - small beer compared with the amount the Bank of England had to spend to prevent UK pension funds from imploding after the Chancellor’s budget. I’m also working with colleagues to use AI to increase the effective resolution of weather and climate models. This will be important in providing early warnings of extreme weather events in developing countries in particular. 

On the fundamental physics front, I have a paper in review which I am pretty excited about, showing how all the weird things we associate with quantum physics really can be explained using ideas from number theory. This does seem to confirm that quantum mechanics is only an approximation to something deeper, and that this “something deeper” may be much more in line with Einstein’s ideas. I do think Einstein was right to stick to his guns in his criticisms of quantum mechanics and I believe time will prove him right. Good to see basic quantum physics being recognised in the latest Nobel Prizes. 

Interview by Brian Clegg - See all of Brian's online articles or subscribe to a digest free here

Comments

Popular posts from this blog

Philip Ball - How Life Works Interview

Philip Ball is one of the most versatile science writers operating today, covering topics from colour and music to modern myths and the new biology. He is also a broadcaster, and was an editor at Nature for more than twenty years. He writes regularly in the scientific and popular media and has written many books on the interactions of the sciences, the arts, and wider culture, including Bright Earth: The Invention of Colour, The Music Instinct, and Curiosity: How Science Became Interested in Everything. His book Critical Mass won the 2005 Aventis Prize for Science Books. Ball is also a presenter of Science Stories, the BBC Radio 4 series on the history of science. He trained as a chemist at the University of Oxford and as a physicist at the University of Bristol. He is also the author of The Modern Myths. He lives in London. His latest title is How Life Works . Your book is about the ’new biology’ - how new is ’new’? Great question – because there might be some dispute about that! Many

Stephen Hawking: Genius at Work - Roger Highfield ****

It is easy to suspect that a biographical book from highly-illustrated publisher Dorling Kindersley would be mostly high level fluff, so I was pleasantly surprised at the depth Roger Highfield has worked into this large-format title. Yes, we get some of the ephemera so beloved of such books, such as a whole page dedicated to Hawking's coxing blazer - but there is plenty on Hawking's scientific life and particularly on his many scientific ideas. I've read a couple of biographies of Hawking, but I still came across aspects of his lesser fields here that I didn't remember, as well as the inevitable topics, ranging from Hawking radiation to his attempts to quell the out-of-control nature of the possible string theory universes. We also get plenty of coverage of what could be classified as Hawking the celebrity, whether it be a photograph with the Obamas in the White House, his appearances on Star Trek TNG and The Big Bang Theory or representations of him in the Simpsons. Ha

The Blind Spot - Adam Frank, Marcelo Gleiser and Evan Thompson ****

This is a curate's egg - sections are gripping, others rather dull. Overall the writing could be better... but the central message is fascinating and the book gets four stars despite everything because of this. That central message is that, as the subtitle says, science can't ignore human experience. This is not a cry for 'my truth'. The concept comes from scientists and philosophers of science. Instead it refers to the way that it is very easy to make a handful of mistakes about what we are doing with science, as a result of which most people (including many scientists) totally misunderstand the process and the implications. At the heart of this is confusing mathematical models with reality. It's all too easy when a mathematical model matches observation well to think of that model and its related concepts as factual. What the authors describe as 'the blind spot' is a combination of a number of such errors. These include what the authors call 'the bifur