Skip to main content

Escape from Model Land - Erica Thompson ***

Over the last few years a number of books, notably Sabine Hossenfelder's Lost in Math, David Orrell's Economyths, Cathy O Neil's Weapons of Math Destruction and Tim Palmer's The Primacy of Doubt, have pointed out problems with the mathematical modelling done by businesses, physicists, meteorologists, epidemiologists, economists and more. These are not anti-science polemics, but rather people who know what they're talking about pointing out the dangers of getting too carried away with elegant mathematics and models, often assuming that the models effectively are reality (and certainly presenting them that way in some of the writing and press releases from the scientists building and using the models).

Erica Thompson takes on the problems of mentally inhabiting the mathematical world she describes as 'model land'. As she cogently points out, it's fine to play in model land all that you like - the problem comes with the way that you exit model land and tie back to the real world. This book is loaded with examples from climate forecasts, economics, pandemic forecasting and more where the modellers have been unable to successfully get out of model land and present their information usefully to those who have to make decisions (or the public). This is not an attempt to get rid of models. Thompson's key argument is that while models will pretty well always be wrong they can still be very useful - and an understanding of uncertainty/risk combined with expert interpretation is the best (if sometimes narrow) bridge to link model land to the real world.

Unfortunately, unlike the books mentioned above, Thompson's doesn't read particularly well - the writing is very dry. It's also arguable that having set us up to ask questions about scientific output and models, we don't get the same degree of analysis applied to Thompson's personal ideas. So, for example, she tells us 'Diversity in boardrooms is shown to result in better decision making'. I don't doubt this, or the parallel she is drawing for needing diversity of models - but how was success of decision making measured, and what does diversity mean in this context? In fact diversity is something of a running theme, with Thompson several times referring to model makers as largely WEIRD (apparently standing for Western, Educated, Industrial, Rich, Developed) - the acronym seems an unnecessarily ad hominem jibe - and is it really possible to develop mathematical models without being educated?

There are a few oddities and omissions. One of Palmer's big points in The Primacy of Doubt is the oddity that economics hasn't taken up ensemble forecasting - something that isn't mentioned here. The way (mathematical) chaos is presented is also a little odd - it's mostly referred to as 'the butterfly effect', which is really only a specific example of a potential (though relatively unlikely) impact of a chaotic system. Thompson also calls chaotic systems complex, yet they can be surprisingly simple. It's also unfortunate when describing the limitations of vaccine modelling there is no mention of a point emphasised in the scientific journal Nature: the way surface transmission and cleaning continued to be pushed many months after there was clear evidence that transmission was primarily airborne. 

Thompson's enthusiasm for diversity has one notable exception that throws into doubt her concept that the best way to use models is to have more intuitive human input from academics to interpret and modify the results. She has an impressive list of diversity requirements - age, social class, background, gender and race for those academics. But she omits the diversity elephant in the room, which is political leanings. When the vast majority of academics are politically left wing, surely this too needs to be taken into account.

Overall, some interesting points, but a dry academic writing style combined with some limitations means that it has less impact than the books mentioned above.

Hardback:   
Kindle 
Using these links earns us commission at no cost to you
Review by Brian Clegg - See all of Brian's online articles or subscribe to a weekly digest for free here

Comments

  1. Just managed to get through the first chapter which was painful given the writing style and the mistakes. Apparently she worked on epidemic models during Covid-19 and yet says epidemics grow exponentially which is against the model equations never mind the laws of Maths and epidemiology. Doesn't understand which conditions are initial conditions. Complains about modelling being WEIRD when lots of cultures had astronomers before contact with the West and so, presumably, astronomical models, their grander buildings may have required engineering models and I'm sure that there are plenty more examples.

    There's a YouTube video plugging the book and the author came across as woolly so I put off buying a copy having previously seen lots of marketing hype. Somewhat regretting my purchase decision now as I'm not sure that I'll finish the book.

    ReplyDelete
    Replies
    1. I don't have a copy to hand, so don't know the context of the exponential growth, but there seems good support that pandemics are well represented by exponential models in the early stages - see, for example, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7575103/

      Delete

Post a Comment

Popular posts from this blog

Rakhat-Bi Abdyssagin Five Way Interview

Rakhat-Bi Abdyssagin (born in 1999) is a distinguished composer, concert pianist, music theorist and researcher. Three of his piano CDs have been released in Germany. He started his undergraduate degree at the age of 13 in Kazakhstan, and having completed three musical doctorates in prominent Italian music institutions at the age of 20, he has mastered advanced composition techniques. In 2024 he completed a PhD in music at the University of St Andrews / Royal Conservatoire of Scotland (researching timbre-texture co-ordinate in avant- garde music), and was awarded The Silver Medal of The Worshipful Company of Musicians, London. He has held visiting affiliations at the Universities of Oxford, Cambridge and UCL, and has been lecturing and giving talks internationally since the age of 13. His latest book is Quantum Mechanics and Avant Garde Music . What links quantum physics and avant-garde music? The entire book is devoted to this question. To put it briefly, there are many different link...

The Bright Side - Sumit Paul-Choudhury ***

When I first saw The Bright Side (the subtitle doesn't help), I was worried it was a self-help manual, a format that rarely contains good science. In reality, Sumit Paul-Choudhury does not give us a checklist for becoming an optimist or anything similar - and there is a fair amount of science content. But to be honest, I didn't get on very well with this book. What Paul-Choudhury sets out to do is to both identify what optimism is and to assess its place in a world where we are beset with big problems such as climate change (which he goes into in some detail) that some activists position as an existential threat. This is all done in a friendly, approachable fashion. In that sense it's a classic pop-psychology title. For me, Paul-Choudhury certainly has it right about the lack of logic of extreme doom-mongers, such as Extinction Rebellion and teenage climate protestors, and his assessment of the nature of optimism seems very reasonable, if presented at a fairly overview leve...

Everything is Predictable - Tom Chivers *****

There's a stereotype of computer users: Mac users are creative and cool, while PC users are businesslike and unimaginative. Less well-known is that the world of statistics has an equivalent division. Bayesians are the Mac users of the stats world, where frequentists are the PC people. This book sets out to show why Bayesians are not just cool, but also mostly right. Tom Chivers does an excellent job of giving us some historical background, then dives into two key aspects of the use of statistics. These are in science, where the standard approach is frequentist and Bayes only creeps into a few specific applications, such as the accuracy of medical tests, and in decision theory where Bayes is dominant. If this all sounds very dry and unexciting, it's quite the reverse. I admit, I love probability and statistics, and I am something of a closet Bayesian*), but Chivers' light and entertaining style means that what could have been the mathematical equivalent of debating angels on...