Skip to main content

Escape from Model Land - Erica Thompson ***

Over the last few years a number of books, notably Sabine Hossenfelder's Lost in Math, David Orrell's Economyths, Cathy O Neil's Weapons of Math Destruction and Tim Palmer's The Primacy of Doubt, have pointed out problems with the mathematical modelling done by businesses, physicists, meteorologists, epidemiologists, economists and more. These are not anti-science polemics, but rather people who know what they're talking about pointing out the dangers of getting too carried away with elegant mathematics and models, often assuming that the models effectively are reality (and certainly presenting them that way in some of the writing and press releases from the scientists building and using the models).

Erica Thompson takes on the problems of mentally inhabiting the mathematical world she describes as 'model land'. As she cogently points out, it's fine to play in model land all that you like - the problem comes with the way that you exit model land and tie back to the real world. This book is loaded with examples from climate forecasts, economics, pandemic forecasting and more where the modellers have been unable to successfully get out of model land and present their information usefully to those who have to make decisions (or the public). This is not an attempt to get rid of models. Thompson's key argument is that while models will pretty well always be wrong they can still be very useful - and an understanding of uncertainty/risk combined with expert interpretation is the best (if sometimes narrow) bridge to link model land to the real world.

Unfortunately, unlike the books mentioned above, Thompson's doesn't read particularly well - the writing is very dry. It's also arguable that having set us up to ask questions about scientific output and models, we don't get the same degree of analysis applied to Thompson's personal ideas. So, for example, she tells us 'Diversity in boardrooms is shown to result in better decision making'. I don't doubt this, or the parallel she is drawing for needing diversity of models - but how was success of decision making measured, and what does diversity mean in this context? In fact diversity is something of a running theme, with Thompson several times referring to model makers as largely WEIRD (apparently standing for Western, Educated, Industrial, Rich, Developed) - the acronym seems an unnecessarily ad hominem jibe - and is it really possible to develop mathematical models without being educated?

There are a few oddities and omissions. One of Palmer's big points in The Primacy of Doubt is the oddity that economics hasn't taken up ensemble forecasting - something that isn't mentioned here. The way (mathematical) chaos is presented is also a little odd - it's mostly referred to as 'the butterfly effect', which is really only a specific example of a potential (though relatively unlikely) impact of a chaotic system. Thompson also calls chaotic systems complex, yet they can be surprisingly simple. It's also unfortunate when describing the limitations of vaccine modelling there is no mention of a point emphasised in the scientific journal Nature: the way surface transmission and cleaning continued to be pushed many months after there was clear evidence that transmission was primarily airborne. 

Thompson's enthusiasm for diversity has one notable exception that throws into doubt her concept that the best way to use models is to have more intuitive human input from academics to interpret and modify the results. She has an impressive list of diversity requirements - age, social class, background, gender and race for those academics. But she omits the diversity elephant in the room, which is political leanings. When the vast majority of academics are politically left wing, surely this too needs to be taken into account.

Overall, some interesting points, but a dry academic writing style combined with some limitations means that it has less impact than the books mentioned above.

Hardback:   
Kindle 
Using these links earns us commission at no cost to you
Review by Brian Clegg - See all of Brian's online articles or subscribe to a weekly digest for free here

Comments

  1. Just managed to get through the first chapter which was painful given the writing style and the mistakes. Apparently she worked on epidemic models during Covid-19 and yet says epidemics grow exponentially which is against the model equations never mind the laws of Maths and epidemiology. Doesn't understand which conditions are initial conditions. Complains about modelling being WEIRD when lots of cultures had astronomers before contact with the West and so, presumably, astronomical models, their grander buildings may have required engineering models and I'm sure that there are plenty more examples.

    There's a YouTube video plugging the book and the author came across as woolly so I put off buying a copy having previously seen lots of marketing hype. Somewhat regretting my purchase decision now as I'm not sure that I'll finish the book.

    ReplyDelete
    Replies
    1. I don't have a copy to hand, so don't know the context of the exponential growth, but there seems good support that pandemics are well represented by exponential models in the early stages - see, for example, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7575103/

      Delete

Post a Comment

Popular posts from this blog

God: the Science, the Evidence - Michel-Yves Bolloré and Olivier Bonnassies ***

This is, to say the least, an oddity, but a fascinating one. A translation of a French bestseller, it aims to put forward an examination of the scientific evidence for the existence of a deity… and various other things, as this is a very oddly structured book (more on that in a moment). In The God Delusion , Richard Dawkins suggested that we should treat the existence of God as a scientific claim, which is exactly what the authors do reasonably well in the main part of the book. They argue that three pieces of scientific evidence in particular are supportive of the existence of a (generic) creator of the universe. These are that the universe had a beginning, the fine tuning of natural constants and the unlikeliness of life.  To support their evidence, Bolloré and Bonnassies give a reasonable introduction to thermodynamics and cosmology. They suggest that the expected heat death of the universe implies a beginning (for good thermodynamic reasons), and rightly give the impression tha...

The Infinite Alphabet - Cesar Hidalgo ****

Although taking a very new approach, this book by a physicist working in economics made me nostalgic for the business books of the 1980s. More on why in a moment, but Cesar Hidalgo sets out to explain how it is knowledge - how it is developed, how it is managed and forgotten - that makes the difference between success and failure. When I worked for a corporate in the 1980s I was very taken with Tom Peters' business books such of In Search of Excellence (with Robert Waterman), which described what made it possible for some companies to thrive and become huge while others failed. (It's interesting to look back to see a balance amongst the companies Peters thought were excellent, with successes such as Walmart and Intel, and failures such as Wang and Kodak.) In a similar way, Hidalgo uses case studies of successes and failures for both businesses and countries in making effective use of knowledge to drive economic success. When I read a Tom Peters book I was inspired and fired up...

The War on Science - Lawrence Krauss (Ed.) ****

At first glance this might appear to be yet another book on how to deal with climate change deniers and the like, such as How to Talk to a Science Denier.   It is, however, a much more significant book because it addresses the way that universities, government and pressure groups have attempted to undermine the scientific process. Conceptually I would give it five stars, but it's quite heavy going because it's a collection of around 18 essays by different academics, with many going over the same ground, so there is a lot of repetition. Even so, it's an important book. There are a few well-known names here - editor Lawrence Krauss, Richard Dawkins and Steven Pinker - but also a range of scientists (with a few philosophers) explaining how science is being damaged in academia by unscientific ideas. Many of the issues apply to other disciplines as well, but this is specifically about the impact on science, and particularly important there because of the damage it has been doing...