Skip to main content

Who Invented the Computer? – Ian Watson

Ian Watson is the author of The Universal Machine and featured in a recent Four Way Interview.
Saturday June 23 2012 was the centenary of the birth of Alan Turing, the troubled genius who invented the modern computer. Why though do so few people recognize his name and his great achievements?
In 1936 English mathematician Alan Turing, published a paper, On Computable Numbers, with an application to the Entscheidungsproblem. This became the foundation of computing. In it Turing presented a theoretical machine that could solve any problem that could be described by instructions encoded on a paper tape. A Turing Machine could calculate square roots, whilst another might solve Sudoku puzzles. Turing demonstrated you could construct a single Universal Machine that could simulate any Turing Machine. One machine solving any problem for which a program could be written – sound familiar? He’d invented the computer.
Then, computers were people who did calculations. As the Allies prepared for WWII they faced a shortage of computers for military calculations. When men left for war the shortage got worse so the US mechanized the problem building the Harvard Mark 1; it could do calculations in seconds that took a person hours. The British also needed mathematicians to crack the Nazi’s Enigma code.
Turing worked at Bletchley Park, perhaps better know as “Station X,” where code-breaking became an industrial process; 12,000 people working 24/7. Although the Polish had cracked Enigma before the war the Nazis had made Enigma more complicated; there were 10114 permutations. Turing designed a machine, called the Bombe, that searched through the permutations and by war’s end the British were reading all Enigma traffic. Historians agree that Turing shortened the war by as much as two years and Churchill would later say that Turing had made the single biggest contribution to Allied victory in the war.
As the 1950s progressed business was quick to use computers and as the technology advanced business computing became an industry. These computers were all universal machines – you could program them to do anything.
There will positively be no internal alteration [of the computer] to be made even if we wish suddenly to switch from calculating the energy levels of the neon atom to the enumeration of groups of order 720. It may appear somewhat puzzling that this can be done. How can one expect a machine to do all this multitudinous variety of things? The answer is that we should consider the machine to be doing something quite simple, namely carrying out orders given to it in a standard form which it is able to understand. – Alan Turing
By the 1970s a generation was born who grew up with “electronic brains;” they wanted their own personal computers. The problem was they had to build them. In 1975 a college dropout called Steve Wozniak built a simple computer around the 8080 microprocessor, which he hooked up to a keyboard and TV. His friend, Steve Jobs, called it the Apple I, and found a Silicon Valley shop that would buy 100 for $500 each. Apple had its first sale and Silicon Valley’s start-up culture was born. Another dropout, Bill Gates, realized that PCs needed software and that people would pay for it – Microsoft would sell them programs.
Turing had another vision, one day computers would think? But, how would you know a computer was intelligent? He devised the Turing Test; a judge sitting at a computer terminal types questions to two entities: a person and a computer. The judge decides which entity is human. If the judge is wrong the computer passes the test and is intelligent.
Artificial intelligence (AI) is entering your daily life. Car satnavs and Google search use AI, Apple’s iPhone can understand your voice and intelligently respond, car manufacturers are developing autonomous cars. Turing’s vision of AI will soon be a reality.
In 1952 Turing was prosecuted for being gay and was sentenced to chemical castration. This caused depression and he committed suicide by eating an apple he’d poisoned. Outside of academia Turing remained virtually unknown because his WWII work was top secret. Slowly word of Turing’s genius spread; in 1999 Time Magazine named him as one of the “100 Most Important People of the 20th Century,” stating: “The fact remains that everyone who taps at a keyboard, opening a spreadsheet or a word-processing program, is working on an incarnation of a Turing machine.” and in 2009 the British Prime Minister issued a public apology:
…on behalf of the British government, and all those who live freely thanks to Alan’s work, I am very proud to say: we’re sorry. You deserved so much better.
Finally Alan Turing is getting the recognition he deserves for inventing the computer, his Universal Machine that has transformed our world and will profoundly influence our futures.

Comments

Popular posts from this blog

Phenomena - Camille Juzeau and the Shelf Studio ****

I am always a bit suspicious of books that are highly illustrated or claim to cover 'almost everything' - and in one sense this is clearly hyperbole. But I enjoyed Phenomena far more than I thought I would. The idea is to cover 125 topics with infographics. On the internet these tend to be long pages with lots of numbers and supposedly interesting factoids. Thankfully, here the term is used in a more eclectic fashion. Each topic gets a large (circa A4) page (a few get two) with a couple of paragraphs of text and a chunky graphic. Sometimes these do consist of many small parts - for example 'the limits of the human body' features nine graphs - three on sporting achievements, three on biometrics (e.g. height by date of birth) and three rather random items (GNP per person, agricultural yields of various crops and consumption of coal). Others have a single illustration, such as a map of the sewers of Paris. (Because, why wouldn't you want to see that?) Just those two s...

The Bright Side - Sumit Paul-Choudhury ***

When I first saw The Bright Side (the subtitle doesn't help), I was worried it was a self-help manual, a format that rarely contains good science. In reality, Sumit Paul-Choudhury does not give us a checklist for becoming an optimist or anything similar - and there is a fair amount of science content. But to be honest, I didn't get on very well with this book. What Paul-Choudhury sets out to do is to both identify what optimism is and to assess its place in a world where we are beset with big problems such as climate change (which he goes into in some detail) that some activists position as an existential threat. This is all done in a friendly, approachable fashion. In that sense it's a classic pop-psychology title. For me, Paul-Choudhury certainly has it right about the lack of logic of extreme doom-mongers, such as Extinction Rebellion and teenage climate protestors, and his assessment of the nature of optimism seems very reasonable, if presented at a fairly overview leve...

Rakhat-Bi Abdyssagin Five Way Interview

Rakhat-Bi Abdyssagin (born in 1999) is a distinguished composer, concert pianist, music theorist and researcher. Three of his piano CDs have been released in Germany. He started his undergraduate degree at the age of 13 in Kazakhstan, and having completed three musical doctorates in prominent Italian music institutions at the age of 20, he has mastered advanced composition techniques. In 2024 he completed a PhD in music at the University of St Andrews / Royal Conservatoire of Scotland (researching timbre-texture co-ordinate in avant- garde music), and was awarded The Silver Medal of The Worshipful Company of Musicians, London. He has held visiting affiliations at the Universities of Oxford, Cambridge and UCL, and has been lecturing and giving talks internationally since the age of 13. His latest book is Quantum Mechanics and Avant Garde Music . What links quantum physics and avant-garde music? The entire book is devoted to this question. To put it briefly, there are many different link...