Skip to main content

Nature’s Nanotech #2 – The magic lotus leaf – Brian Clegg

The second in our Nature’s Nanotech series.
Living things are built on hidden nanotechnology components, but sometimes that technology achieves remarkable things in a very visible way. A great example is the ‘lotus leaf effect.’ This is named after the sacred lotus, the Nelumbo nucifera, an Asian plant that looks a little like a water lily. The plant’s leaves often emerge into the air covered in sticky mud, but when water runs over them they are self cleaning – the mud runs off, leaving a bare leaf exposed to the sunlight.
Water on a Lotus leaf – image from Wikipedia
Other plants have since been discovered to have a similar lotus leaf effect, including the nasturtium, the taro and the prickly pear cactus. Seen close up, the leaves of the sacred lotus are covered in a series of tiny protrusions, like a bad case of goose bumps. A combination of the shape of these projections and a covering of wax makes the surface hydrophobic. This literally means that it fears water, but more accurately, the leaf refuses to get too intimate with the liquid. This shouldn’t be confused with hydrophobia, a term for rabies!
Water is naturally pulled into droplets by the hydrogen bonding that links its molecules and ensures that this essential liquid for life exists on the Earth (without hydrogen bonding, water would boil at around -70 Celsius). This attraction is why raindrops are spherical. They aren’t teardrop shaped as they are often portrayed. Left to their own devices, water drops are spherical because the force of the hydrogen bonding pulls all the molecules in towards each other, but there is no equivalent outward force, so the water naturally forms a sphere.
The surface of the lotus leaf helps water stay in that spherical form, rather than spreading out and wetting the leaf. The result is that the water rolls off, carrying dirt with it, rather like an avalanche picking up rocks as it passes by. Because of the shape of the surface pimples on the leaf, known as papillae, particles of dirt do not stick to the surface well, but instead are more likely to stick to the rolling droplets and be carried away. As well as letting the light through to enable photosynthesis, this effect is beneficial to the leaves as it protects them against incursion by fungi and other predatory growths.
Although the papillae themselves can be as large as 20,000 nanometres tall, the effectiveness of these bumps is in their nanoscale structure, with multiple tiny nobbly bits that reduce the amount of contact area the water has with the surface to a tiny percentage. After the effect was discovered in the 1960s, it seemed inevitable that industry would make use of it and there have been several remarkable applications.
One example that is often used is self-cleaning glass – which seems very reasonable as the requirement is identical to the needs of the lotus leaf – yet strangely, what is used here is entirely different. Pilkington, the British company that invented the float glass process, has such a glass product known as Activ. This has a photo-catalytic material on its surface that helps daylight to break down dirt into small particles, but it also has a surface coating that works in the opposite way to the lotus leaf. It’s an anti-lotus leaf effect.
The coating on this glass, a nanoscale thin film, is hydrophilic rather than hydrophobic. Instead of encouraging water to form into droplets that roll over the glass picking up the dirt as they go, this technology encourages water to slide over the surface in a sheet, sluicing the dirt away. In practice this works best with heavy rainfall, where the lotus effect is better at cleaning surfaces with less of a downpour – but both involve nanoscale modification of the surface to change the way that water molecules interact.
Increasingly now, though, we are seeing true lotus leaf effect inspired products, that make objects hydrophobic. A process like P2i’s Aridion technology applies a nano-scale coating of a fluoro-polymer that keeps water in droplets. The most impressive aspect of this technology is just how flexible it is. Originally used to protect soldiers clothing against chemical attack , the coatings are now being applied to electronic equipment like smartphones, where internal and external components are coated to make them hydrophobic, as well as lifestyle products such as footwear, gloves and hats. Working like self-cleaning glass would be disastrous here. The whole point is to keep the water off the substance, not to get it wetter.
We are really only just starting to see the applications of the lotus leaf effect come to full fruition. For now it is something of a rarity. Arguably it will become as common for a product to have a protective coating as it for it to be coloured with a dye or paint. Particularly for those of us who live in wet climates like the UK, it is hard to see why you wouldn’t want anything you use outdoors to shrug water off easily. I know there have been plenty of times when I have been worriedly rubbing my phone dry on my shirt that I would have loved the lotus leaf effect to have come to my rescue.
Seeing nanotechnology at work in the natural world doesn’t have to help us come up with new products. It could just be a way of understanding better how a remarkable natural phenomenon takes place. In the next article in this series

 I will be looking at a mystery that was unlocked with a better understanding of nature’s nanotech – but one that also has significant commercial implications. How does a gecko cling on to apparently smooth walls?

Comments

Popular posts from this blog

The Antigravity Enigma - Andrew May ****

Antigravity - the ability to overcome the pull of gravity - has been a fantasy for thousands of years and subject to more scientific (if impractical) fictional representation since H. G. Wells came up with cavorite in The First Men in the Moon . But is it plausible scientifically?  Andrew May does a good job of pulling together three ways of looking at our love affair with antigravity (and the related concept of cancelling inertia) - in science fiction, in physics and in pseudoscience and crankery. As May points out, science fiction is an important starting point as the concept was deployed there well before we had a good enough understanding of gravity to make any sensible scientific stabs at the idea (even though, for instance, Michael Faraday did unsuccessfully experiment with a possible interaction between gravity and electromagnetism). We then get onto the science itself, noting the potential impact on any ideas of antigravity that come from the move from a Newtonian view of a...

The World as We Know It - Peter Dear ***

History professor Peter Dear gives us a detailed and reasoned coverage of the development of science as a concept from its origins as natural philosophy, covering the years from the eighteenth to the twentieth century. inclusive If that sounds a little dry, frankly, it is. But if you don't mind a very academic approach, it is certainly interesting. Obviously a major theme running through is the move from largely gentleman natural philosophers (with both implications of that word 'gentleman') to professional academic scientists. What started with clubs for relatively well off men with an interest, when universities did not stray far beyond what was included in mathematics (astronomy, for instance), would become a very different beast. The main scientific subjects that Dear covers are physics and biology - we get, for instance, a lot on the gradual move away from a purely mechanical views of physics - the reason Newton's 'action at a distance' gravity caused such ...

It's On You - Nick Chater and George Loewenstein *****

Going on the cover you might think this was a political polemic - and admittedly there's an element of that - but the reason it's so good is quite different. It shows how behavioural economics and social psychology have led us astray by putting the focus way too much on individuals. A particular target is the concept of nudges which (as described in Brainjacking ) have been hugely over-rated. But overall the key problem ties to another psychological concept: framing. Huge kudos to both Nick Chater and George Loewenstein - a behavioural scientist and an economics and psychology professor - for having the guts to take on the flaws in their own earlier work and that of colleagues, because they make clear just how limited and potentially dangerous is the belief that individuals changing their behaviour can solve large-scale problems. The main thesis of the book is that there are two ways to approach the major problems we face - an 'i-frame' where we focus on the individual ...