Skip to main content

Nature’s Nanotech – Brian Clegg

When we think of nanotechnology, it’s easy to jump to the conclusion that we are dealing with the ultimate in artificial manufacturing, the diametric opposite of something that’s natural. Yet in practice, nature is built on nanotechnology. From the day-to-day workings of the components of every single biological cell to the subtle optics of a peacock feather, what we see is nanotechnology at work.
Not only are the very building blocks of nature nanoscale, but natural nanotechnology is a magnificent inspiration for ways to make use of the microscopic to change our lives and environment for the better. By studying how very small things work in the natural world we can invent remarkable new products – and this feature is the first in a series that will explore just how much we can learn and gain from nature’s nanotech.
As I described in The Nanotechnology Myth the term ‘nanotechnology’ originates from the prefix nano- which is simply a billionth. Nanotechnology makes use of objects on the scale of a few nanometres, where a nanometre is a millionth of a millimetre. For comparison, a human hair is around 50,000 nanometres across. Nanotechnology encompasses objects that vary in size from a large molecule to a virus. A bacterium, typically around 1,000 nanometres in size, is around the upper limit of nanoscale items.
A first essential is to understand that although nanotechnology, like chemistry, is involved in the interaction of very small components of matter, it is entirely different from a chemical reaction. Chemistry is about the way those components join together and break apart. Nanotechnology is primarily about their physics – how the components interact. If we think of the analogy of making a bicycle, the ‘chemistry’ of the bicycle is how the individual components bolt together, the ‘nanotechnology’ is how, for example, the gear interacts with the chain or pushing the pedals makes the bike go.
This distinction is necessary to get over the concern some people raise about nature and nanotechnology. A while ago, when I wrote my book on environmental truth and lies, Ecologic, I had a strange argument with a representative of the Soil Association, the UK’s primary organic body. In 2008 the Soil Association banned nanoparticles from their products. But it only banned man-made nanoparticles, claiming that natural ones, like soot, are fine ‘because life has evolved with these.
This is a total misunderstanding of the science. If there are any issues with nanotechnology they are about the physics, not the chemistry of the substance – and there is no sensible physical distinction between a natural nanoparticle and an artificial one. In the case of the Soil Association, the reasoning was revealed when they admitted that they take ‘a principles-based regulatory approach, rather than a case-by-case approach based on scientific information.’ In other words their opposition was a knee-jerk one to words like ‘natural’ and ‘artificial’ rather than based on substance.
Of themselves, like anything else, nanoparticles and nanotechnology in general can be used for bad or for good. Whether natural or artificial they have benefits and disadvantages. A virus, for example, is a purely natural nanotechnology that can be devastatingly destructive to living things. And as we will see, there are plenty of artificial nanotechnologies that bring huge benefits.
In nature, nanotechnology is constructed from large molecules. A molecule is nothing more than a collection of atoms, bonded together to form a structure, which can be as simple as a sodium chloride molecule – one atom each of the elements sodium and chlorine – or as complex as the dual helix of DNA. We don’t always appreciate how significant individual molecules are.
I had a good example of this a few days ago when I helped judge a competition run by the University of the West of England for school teams producing science videos. The topic they were given was the human genome – and the result was a set of very varied videos, some showing a surprising amount of talent. At the awards event I was giving a quick talk to the participants, looking at the essentials of a good science video. I pointed out that they had used a lot of jargon without explaining it – a common enough fault even in mainstream TV science.
Just to highlight this, I picked out a term most of them had used, but none had explained – chromosomes. What, I asked them was a chromosome? They told me what it did, but didn’t know what it was, except that it was a chunk of DNA and each human had 46 of them in most of their cells. This is true, but misses the big point. A chromosome is simply a single molecule of DNA. Nothing more, nothing less. One molecule.
Admittedly a chromosome is a very large molecule. Human chromosome 1 is the biggest molecule we know of, with around 10 billion atoms. Makes salt look a bit feeble. But it is still a molecule. The basic components of the biological mechanisms of everything living, up to an including human beings are molecules. Chromosomes provide one example, effectively information storage molecules with genes as chunks of information strung along a strip of DNA. Then there are proteins, the workhorses of the body. There are neurotransmitters and enzymes, and a whole host of molecules that are the equivalent of gears to the body’s magnificent clockwork. These are the building blocks of natural nanotechnology.
So with a picture of what we’re dealing with we can set out to see nature’s nanotech in action and the first example, in the next feature in this series, will show how nanotechnology on the surface of a leaf has inspired both self-cleaning glass and water resistant trainers.

Comments

Popular posts from this blog

Models of the Mind - Grace Lindsay *****

This is a remarkable book. When Ernest Rutherford made his infamous remark about science being either physics or stamp collecting, it was, of course, an exaggeration. Yet it was based on a point - biology in particular was primarily about collecting information on what happened rather than explaining at a fundamental level why it happened. This book shows how biologists, in collaboration with physicists, mathematicians and computer scientists, have moved on the science of the brain to model some of its underlying mechanisms. Grace Lindsay is careful to emphasise the very real difference between physical and biological problems. Most systems studied by physics are a lot simpler than biological systems, making it easier to make effective mathematical and computational models. But despite this, huge progress has been made drawing on tools and techniques developed for physics and computing to get a better picture of the mechanisms of the brain. In the book we see this from two directions

The Ten Equations that Rule the World - David Sumpter ****

David Sumpter makes it clear in this book that a couple of handfuls of equations have a huge influence on our everyday lives. I needed an equation too to give this book a star rating - I’ve never had one where there was such a divergence of feeling about it. I wanted to give it five stars for the exposition of the power and importance of these equations and just two stars for an aspect of the way that Sumpter did it. The fact that the outcome of applying my star balancing equation was four stars emphasises how good the content is. What we have here is ten key equations from applied mathematics. (Strictly, nine, as the tenth isn’t really an equation, it’s the programmer’s favourite ‘If… then…’ - though as a programmer I was always more an ‘If… then… else…’ fan.) Those equations range from the magnificent one behind Bayesian statistics and the predictive power of logistic regression to the method of determining confidence intervals and the kind of influencer matrix so beloved of social m

Helgoland - Carlo Rovelli ****

Although Helgoland suffers from the usual issues Carlo Rovelli's books face - it is very short for the price and has a distinct tendency to purple prose - it is his best so far. In fact, the first hundred pages or so are excellent. Rovelli starts by giving us a brief background to quantum physics, concentrating most on Heisenberg, Schrödinger and to an extent Dirac's key period of contribution. This is clear and to the point. He then gives us a short summary of a couple of familiar quantum interpretations before introducing his own relational quantum physics interpretation. Although this idea dates back to the 1990s it has had very little coverage in popular science books, which is a shame.  Like all interpretations, Rovelli's requires us to accept some difficult postulates - in this case, that the reality of the state of a quantum system is relative rather than absolute - so it can be different for one observer than it is for another. Although at first this seems bizarre,