Skip to main content

Jason Steffen - Five way interview

Jason Steffen is associate professor of physics at the University of Nevada, Las Vegas. A longtime science team member of NASA’s Kepler mission, he has contributed to the discovery and characterisation of thousands of planets that orbit distant stars. His new book is Hidden in the Heavens.

Why astronomy?

I originally wanted to be an aerospace engineer to design and build airplanes.  My undergraduate institution didn't have aerospace engineering:  I took an astronomy class my first quarter, and decided to major in physics.  My degrees are in physics rather than astronomy, but my research is all on topics related to astronomy in one way or another. 

For a period of time after graduate school I did experimental physics research on dark matter and dark energy.  I was working at a national laboratory, a big atom smasher outside of Chicago, called Fermilab.  At the same time that I was doing this work for Fermilab, I also worked for NASA on the Kepler mission to find exoplanets.  Half my salary came from one project, the other half from the other.  It was pretty intense, but I learned a lot.  Eventually, I decided that I needed to stick with one research area and chose to stick with exoplanets. 

Why this book?

For a long time I've been interested in writing a book.  I enjoy explaining the things that we've collectively learned and how we learned them.  It had been just over a decade since the original Kepler mission launched, so it was far enough in the past that we could give a decent assessment of what its significance was, but not so far in the past that everyone was retired or dead.  So, I still had access to my colleagues, as well as a copy of all of the emails that were shared among our working group.  It seemed that the time was right to tell the story of the mission.

We’ve now discovered thousands of exoplanets - are we still finding anything new and unexpected?

A lot of exoplanet science has moved on from discovering new systems (although that still happens).  Today, our advances often happen in characterizing the properties of those planets.  Measuring their masses, the composition of their atmospheres, the nature of the planetary system that they live within, the properties of the star that they orbit, etc.  We are learning a lot about how the sizes of different planets in a given system, and their orbits, relate to each other and what that implies for their histories, and the history of the solar system.

We also have instruments, like the James Webb Space Telescope, where we can see the different chemicals that are in the atmospheres of these planets.  That tells us about the conditions where they formed, and whether or not their surfaces might be conducive for life to exist.  Each day there are a dozen or so new papers that share new results, so there is still consistent progress in a number of areas.

What’s next?

 In exoplanets, there is ongoing work with the TESS mission (Transiting Exoplanet Survey Satellite).  That is discovering new systems on a regular basis.  There are also plans to launch the PLATO mission, which is a successor to Kepler, this time led by the European Space Agency.  Another satellite, the Nancy Grace Roman Telescope, led by NASA will be able to detect a lot of planets across our galaxy that we currently don't have the capability to see.  So, the field of exoplanets is not slowing down any time soon.

What’s exciting you at the moment?

My current research is looking at the chemical composition of the planets themselves, not their atmospheres, but their interiors.  Planets form in a disk of material that orbits the newborn star.  As that disk cools, different minerals condense and rain down to the disk midplane where they ultimately form the building blocks of planets.  My group models the condensation of those different minerals so that we can predict what the planets will be made of.

My group also developed computer software that models the internal structure of planets given their composition.  So, we can take the output of our predictions for the composition of the planets, and then turn it into real planets using this other software.  (We called the software MAGRATHEA, after the planet in the Hitchhiker's Guide to the Galaxy where planets are made to order.)  Ultimately, we are trying to predict the details of what exoplanets are like, and the conditions under which they formed.

Photograph (c) Robert Royer III

These articles will always be free - but if you'd like to support my online work, consider buying a virtual coffee:
Interview by Brian Clegg - See all Brian's online articles or subscribe to a weekly email free here

Comments

Popular posts from this blog

God: the Science, the Evidence - Michel-Yves Bolloré and Olivier Bonnassies ***

This is, to say the least, an oddity, but a fascinating one. A translation of a French bestseller, it aims to put forward an examination of the scientific evidence for the existence of a deity… and various other things, as this is a very oddly structured book (more on that in a moment). In The God Delusion , Richard Dawkins suggested that we should treat the existence of God as a scientific claim, which is exactly what the authors do reasonably well in the main part of the book. They argue that three pieces of scientific evidence in particular are supportive of the existence of a (generic) creator of the universe. These are that the universe had a beginning, the fine tuning of natural constants and the unlikeliness of life.  To support their evidence, Bolloré and Bonnassies give a reasonable introduction to thermodynamics and cosmology. They suggest that the expected heat death of the universe implies a beginning (for good thermodynamic reasons), and rightly give the impression tha...

Humble Pi - Matt Parker ****

Matt Parker had me thoroughly enjoying this collection of situations where maths and numbers go wrong in everyday life. I think the book's title is a little weak - 'Humble Pi' doesn't really convey what it's about, but that subtitle 'a comedy of maths errors' is far more informative. With his delightful conversational style, honed in his stand-up maths shows, it feels as if Parker is a friend down the pub, relating the story of some technical disaster driven by maths and computing, or regaling us with a numerical cock-up. These range from the spectacular - wobbling and collapsing bridges, for example - to the small but beautifully formed, such as Excel's rounding errors. Sometimes it's Parker's little asides that are particularly attractive. I loved his rant on why phone numbers aren't numbers at all (would it be meaningful for someone to ask you what half your phone number is?). We discover the trials and tribulations of getting cal...

Quantum 2.0 - Paul Davies ****

Unlike the general theory of relativity or cosmology, quantum physics is an aspect of physics that has had a huge impact on everyday lives, particularly through the deployment of electronics, but also, for example, where superconductivity has led to practical applications. But when Paul Davies is talking about version 2.0, he is specifically describing quantum information, where quantum particles and systems are used in information technology. This obviously includes quantum computers, but Davies also brings in, for example, the potential for quantum AI technology. Quantum computers have been discussed for decades - algorithms had already been written for them as early as the 1990s - but it's only now that they are starting to become usable devices, not at the personal level but in servers. In his usual approachable style, Davies gives us four chapters bringing us up to speed on quantum basics, but then brings in quantum computing. After this we don't get solid quantum informat...