Skip to main content

Jason Steffen - Five way interview

Jason Steffen is associate professor of physics at the University of Nevada, Las Vegas. A longtime science team member of NASA’s Kepler mission, he has contributed to the discovery and characterisation of thousands of planets that orbit distant stars. His new book is Hidden in the Heavens.

Why astronomy?

I originally wanted to be an aerospace engineer to design and build airplanes.  My undergraduate institution didn't have aerospace engineering:  I took an astronomy class my first quarter, and decided to major in physics.  My degrees are in physics rather than astronomy, but my research is all on topics related to astronomy in one way or another. 

For a period of time after graduate school I did experimental physics research on dark matter and dark energy.  I was working at a national laboratory, a big atom smasher outside of Chicago, called Fermilab.  At the same time that I was doing this work for Fermilab, I also worked for NASA on the Kepler mission to find exoplanets.  Half my salary came from one project, the other half from the other.  It was pretty intense, but I learned a lot.  Eventually, I decided that I needed to stick with one research area and chose to stick with exoplanets. 

Why this book?

For a long time I've been interested in writing a book.  I enjoy explaining the things that we've collectively learned and how we learned them.  It had been just over a decade since the original Kepler mission launched, so it was far enough in the past that we could give a decent assessment of what its significance was, but not so far in the past that everyone was retired or dead.  So, I still had access to my colleagues, as well as a copy of all of the emails that were shared among our working group.  It seemed that the time was right to tell the story of the mission.

We’ve now discovered thousands of exoplanets - are we still finding anything new and unexpected?

A lot of exoplanet science has moved on from discovering new systems (although that still happens).  Today, our advances often happen in characterizing the properties of those planets.  Measuring their masses, the composition of their atmospheres, the nature of the planetary system that they live within, the properties of the star that they orbit, etc.  We are learning a lot about how the sizes of different planets in a given system, and their orbits, relate to each other and what that implies for their histories, and the history of the solar system.

We also have instruments, like the James Webb Space Telescope, where we can see the different chemicals that are in the atmospheres of these planets.  That tells us about the conditions where they formed, and whether or not their surfaces might be conducive for life to exist.  Each day there are a dozen or so new papers that share new results, so there is still consistent progress in a number of areas.

What’s next?

 In exoplanets, there is ongoing work with the TESS mission (Transiting Exoplanet Survey Satellite).  That is discovering new systems on a regular basis.  There are also plans to launch the PLATO mission, which is a successor to Kepler, this time led by the European Space Agency.  Another satellite, the Nancy Grace Roman Telescope, led by NASA will be able to detect a lot of planets across our galaxy that we currently don't have the capability to see.  So, the field of exoplanets is not slowing down any time soon.

What’s exciting you at the moment?

My current research is looking at the chemical composition of the planets themselves, not their atmospheres, but their interiors.  Planets form in a disk of material that orbits the newborn star.  As that disk cools, different minerals condense and rain down to the disk midplane where they ultimately form the building blocks of planets.  My group models the condensation of those different minerals so that we can predict what the planets will be made of.

My group also developed computer software that models the internal structure of planets given their composition.  So, we can take the output of our predictions for the composition of the planets, and then turn it into real planets using this other software.  (We called the software MAGRATHEA, after the planet in the Hitchhiker's Guide to the Galaxy where planets are made to order.)  Ultimately, we are trying to predict the details of what exoplanets are like, and the conditions under which they formed.

Photograph (c) Robert Royer III

These articles will always be free - but if you'd like to support my online work, consider buying a virtual coffee:
Interview by Brian Clegg - See all Brian's online articles or subscribe to a weekly email free here

Comments

Popular posts from this blog

Rakhat-Bi Abdyssagin Five Way Interview

Rakhat-Bi Abdyssagin (born in 1999) is a distinguished composer, concert pianist, music theorist and researcher. Three of his piano CDs have been released in Germany. He started his undergraduate degree at the age of 13 in Kazakhstan, and having completed three musical doctorates in prominent Italian music institutions at the age of 20, he has mastered advanced composition techniques. In 2024 he completed a PhD in music at the University of St Andrews / Royal Conservatoire of Scotland (researching timbre-texture co-ordinate in avant- garde music), and was awarded The Silver Medal of The Worshipful Company of Musicians, London. He has held visiting affiliations at the Universities of Oxford, Cambridge and UCL, and has been lecturing and giving talks internationally since the age of 13. His latest book is Quantum Mechanics and Avant Garde Music . What links quantum physics and avant-garde music? The entire book is devoted to this question. To put it briefly, there are many different link...

The Bright Side - Sumit Paul-Choudhury ***

When I first saw The Bright Side (the subtitle doesn't help), I was worried it was a self-help manual, a format that rarely contains good science. In reality, Sumit Paul-Choudhury does not give us a checklist for becoming an optimist or anything similar - and there is a fair amount of science content. But to be honest, I didn't get on very well with this book. What Paul-Choudhury sets out to do is to both identify what optimism is and to assess its place in a world where we are beset with big problems such as climate change (which he goes into in some detail) that some activists position as an existential threat. This is all done in a friendly, approachable fashion. In that sense it's a classic pop-psychology title. For me, Paul-Choudhury certainly has it right about the lack of logic of extreme doom-mongers, such as Extinction Rebellion and teenage climate protestors, and his assessment of the nature of optimism seems very reasonable, if presented at a fairly overview leve...

Everything is Predictable - Tom Chivers *****

There's a stereotype of computer users: Mac users are creative and cool, while PC users are businesslike and unimaginative. Less well-known is that the world of statistics has an equivalent division. Bayesians are the Mac users of the stats world, where frequentists are the PC people. This book sets out to show why Bayesians are not just cool, but also mostly right. Tom Chivers does an excellent job of giving us some historical background, then dives into two key aspects of the use of statistics. These are in science, where the standard approach is frequentist and Bayes only creeps into a few specific applications, such as the accuracy of medical tests, and in decision theory where Bayes is dominant. If this all sounds very dry and unexciting, it's quite the reverse. I admit, I love probability and statistics, and I am something of a closet Bayesian*), but Chivers' light and entertaining style means that what could have been the mathematical equivalent of debating angels on...