Skip to main content

Cosmic Odyssey - Linda Schweizer *****

Based on its generic-sounding title, you might expect this to be a broad-ranging history of astrophysical concepts – and if you buy it on that basis you won’t be disappointed. From stellar evolution and the structure of galaxies to supermassive black holes, quasars and the expansion of the universe, Linda Schweizer shows – in admirably non-technical detail – how our understanding of the fundamental pillars of modern astronomy developed over several decades from a standing start.

In spite of that, this isn’t a generic history at all. It has a very specific remit, encapsulated in the subtitle: ‘How Intrepid Astronomers at Palomar Observatory Changed our View of the Universe’. California’s Palomar Observatory is home to the ‘200-inch’ (5.1 metres – the diameter of the main mirror) Hale telescope, which was the premier instrument for optical astronomy from its inauguration in 1949 until the Hubble telescope became fully operational 45 years later. This was perhaps the most eventful and fast-moving period in the history of astrophysics, thanks in part to the power of the Hale telescope itself, coupled with the advent of complementary new techniques such as radio astronomy, and a general increase in support for space-related research around the world.

As the subtitle implies, the book describes the science from the point of view of the astronomers involved – not so much in traditional biographical style, but showing how they made one astonishing breakthrough after another by bouncing ideas off each other and following hunches. I’m not convinced that ‘intrepid’ is quite the right word, though. In a job where there’s no actual physical danger, I guess intrepid means not being afraid to follow up unpopular, potentially career-destroying theories. But only one of the protagonists, Halton Arp, really matches that description – and most of his wackier ideas turned out to be wrong.

On the other hand, the people who made the great discoveries, like quasars, weren’t really taking risks at all. The outlandishness was all in the data, not their interpretation of it. Even so, they still made their share of mistakes, such as when Allan Sandage over-enthusiastically proclaimed that every star-like object with a high UV-to-blue ratio was a quasar (actually most of them are just stars). In her preface, Schweizer describes the Palomar scientists as ‘eccentric yet inspiring’ – which wouldn’t have looked as good as ‘intrepid’ on the cover, but is probably closer to the truth.

The period covered – essentially the second half of the 20th century – is sufficiently recent that many of the key players are still alive, or were when Schweizer started collecting material for the book, so she was able to capture valuable recollections from people like Sandage and Arp before they were lost to history. For the same reason, the book will be something of a nostalgia trip for older readers, who may remember some of the discoveries from the time they were made.

In my own case, the book brought back vivid memories of my time as an astronomy postdoc in the 1980s, when I crossed paths with several of the characters mentioned – and I fully concur with Schweizer’s ‘eccentric yet inspiring’ sentiment. Alar Toomre, one of the main protagonists of her chapter on interacting galaxies, was name-checked in my first published paper for his ‘enthusiastic help in understanding the results’. That was a euphemistic way of saying he did all the hard work for me, in the longest private letter I’ve ever received – eight typewritten pages plus 16 pages of diagrams.

In all there are 12 thematically organised chapters, two of them on subjects I’ve got some professional knowledge of – galactic structure and dynamics – and others that I’m really no more knowledgeable about than a general reader, such as solar system physics or stellar nucleosynthesis. Viewed from either perspective, I found Schweizer’s style clear, intelligent and informative. I’d heartily recommend the book to anyone with an interest in astronomy that goes deeper than gazing at pretty pictures (of which this book has its share, though ironically most of them are credited to the Hubble rather than Palomar telescope).


Hardback:

Kindle:  
Using these links earns us commission at no cost to you
Review by Andrew May

Comments

Popular posts from this blog

Why Don't Things Fall Up? - Alom Shaha *****

At first glance, Alom Shaha's book is another of those compact hardbacks with six or seven essays that have done so well in the popular science field since Rovelli's Seven Brief Lessons in Physics . Even the subtitle 'and six other science lessons you missed at school' suggests this. But in reality, Shaha is doing something far more original and interesting. Popular science for absolute beginners. The thing is, most popular science titles are written either by scientists or professional science writers who typically have a science-based degree. Shaha is, indeed, such a science writer, but he is also a secondary school science teacher. Scientists rarely grasp how to present science in a way that doesn't assume a reasonable amount of pre-knowledge. Science writers are usually better than this, but tend to favour the exotic and exciting bits of science, which often means going into more depth than many readers feel comfortable with. This is genuinely a book on science

Alom Shaha - five way interview

Alom Shaha was born in Bangladesh but grew up in London. A science teacher, writer and filmmaker, he has spent most of his professional life sharing his passion for science and education with the public. Alom has produced, directed and appeared in a number of TV programmes for broadcasters such as the BBC, and has received fellowships from the National Endowment for Science, Technology and the Arts, and the Nuffield Foundation. Alom has represented his community as an elected politician and has volunteered at a range of charitable organisations. He teaches at a comprehensive school in London and writes for a number of online and print publications. His new book is Why Don't Things Fall Up? Why science? Honestly, because I had a couple of great teachers at school who made it make sense and come alive for me and, perhaps more importantly, made me believe it was something I could do. Why this book?  It’s the book I’ve been wanting and meaning to write ever since I had my first book pu

Nuclear Fusion - Sharon Ann Holgate ****

Nuclear fusion should, in principle, be the perfect addition to renewables as we move away from greenhouse gas generating energy sources. Yet, more than 60 years after it was first suggested, we still don't have a single working nuclear fusion power station. (If, as the subtitle suggests, this has been a race, it has been a walking backwards three-legged race.) Sharon Ann Holgate provides a compact introduction to what nuclear fusion is, the various steps along the road that have been made so far, and why it has taken so long. Starting with fusion as the power source of the stars, we discover the difficulty of keeping the tricky, twisty ultra hot material in the fusion reactor under control when using magnetic confinement, look at the two main technical approaches (and variants), the sheer scale of the engineering challenge, what is underway with ITER and more, along with the potential for the future. Although this is an area beset with disappointments, one where we always seems to