Skip to main content

Cosmic Odyssey - Linda Schweizer *****

Based on its generic-sounding title, you might expect this to be a broad-ranging history of astrophysical concepts – and if you buy it on that basis you won’t be disappointed. From stellar evolution and the structure of galaxies to supermassive black holes, quasars and the expansion of the universe, Linda Schweizer shows – in admirably non-technical detail – how our understanding of the fundamental pillars of modern astronomy developed over several decades from a standing start.

In spite of that, this isn’t a generic history at all. It has a very specific remit, encapsulated in the subtitle: ‘How Intrepid Astronomers at Palomar Observatory Changed our View of the Universe’. California’s Palomar Observatory is home to the ‘200-inch’ (5.1 metres – the diameter of the main mirror) Hale telescope, which was the premier instrument for optical astronomy from its inauguration in 1949 until the Hubble telescope became fully operational 45 years later. This was perhaps the most eventful and fast-moving period in the history of astrophysics, thanks in part to the power of the Hale telescope itself, coupled with the advent of complementary new techniques such as radio astronomy, and a general increase in support for space-related research around the world.

As the subtitle implies, the book describes the science from the point of view of the astronomers involved – not so much in traditional biographical style, but showing how they made one astonishing breakthrough after another by bouncing ideas off each other and following hunches. I’m not convinced that ‘intrepid’ is quite the right word, though. In a job where there’s no actual physical danger, I guess intrepid means not being afraid to follow up unpopular, potentially career-destroying theories. But only one of the protagonists, Halton Arp, really matches that description – and most of his wackier ideas turned out to be wrong.

On the other hand, the people who made the great discoveries, like quasars, weren’t really taking risks at all. The outlandishness was all in the data, not their interpretation of it. Even so, they still made their share of mistakes, such as when Allan Sandage over-enthusiastically proclaimed that every star-like object with a high UV-to-blue ratio was a quasar (actually most of them are just stars). In her preface, Schweizer describes the Palomar scientists as ‘eccentric yet inspiring’ – which wouldn’t have looked as good as ‘intrepid’ on the cover, but is probably closer to the truth.

The period covered – essentially the second half of the 20th century – is sufficiently recent that many of the key players are still alive, or were when Schweizer started collecting material for the book, so she was able to capture valuable recollections from people like Sandage and Arp before they were lost to history. For the same reason, the book will be something of a nostalgia trip for older readers, who may remember some of the discoveries from the time they were made.

In my own case, the book brought back vivid memories of my time as an astronomy postdoc in the 1980s, when I crossed paths with several of the characters mentioned – and I fully concur with Schweizer’s ‘eccentric yet inspiring’ sentiment. Alar Toomre, one of the main protagonists of her chapter on interacting galaxies, was name-checked in my first published paper for his ‘enthusiastic help in understanding the results’. That was a euphemistic way of saying he did all the hard work for me, in the longest private letter I’ve ever received – eight typewritten pages plus 16 pages of diagrams.

In all there are 12 thematically organised chapters, two of them on subjects I’ve got some professional knowledge of – galactic structure and dynamics – and others that I’m really no more knowledgeable about than a general reader, such as solar system physics or stellar nucleosynthesis. Viewed from either perspective, I found Schweizer’s style clear, intelligent and informative. I’d heartily recommend the book to anyone with an interest in astronomy that goes deeper than gazing at pretty pictures (of which this book has its share, though ironically most of them are credited to the Hubble rather than Palomar telescope).


Hardback:

Kindle:  
Using these links earns us commission at no cost to you
Review by Andrew May

Comments

Popular posts from this blog

Four Way Interview - Jim Al-Khalili

Photo by Nick Smith Jim Al-Khalili hosts The Life Scientific on BBC Radio 4 and has presented numerous BBC television documentaries. He is Professor of Theoretical Physics and Chair in the Public Engagement in Science at the University of Surrey, a New York Times bestselling author, and a fellow of the Royal Society. He is the author of numerous books, including Quantum: A Guide for the Perplexed; The House of Wisdom: How Arabic Science Saved Ancient Knowledge and Gave Us the Renaissance; Life on the Edge: The Coming of Age of Quantum Biology; and The World According to Physics. His latest book is The Joy of Science . Why joy?  While I focus more in the book on the process of science itself to gain knowledge about the world, I also wanted to get across the fact that science is so much more than hard facts and lessons in critical thinking.  Science helps us see the world more deeply, enriches us, enlightens us.  The closer we look, the more we can see and the more we can wonder. I feel

Transformer - Nick Lane *****

This is probably the best book on biology (and more specifically biochemistry) that I've ever read. Ever since Richard Dawkins wrote The Selfish Gene , we've been dazzled by the importance of the genetic code (or, as Lane points out in one of his many asides, what should really be called the genetic cipher) - but this focus has tended to give an exaggerated importance to the information stored there. Of course it's essential to life - but as this book explores, chemistry and energy are what life is really about. Nick Lane points out that there is no difference in the information in an organism just before and just after it dies - but there's quite a lot of difference in terms of its life. Biology and chemistry can both be extremely difficult to put across in popular science. Biology because it's so complicated with vast numbers of molecules and processes involved, and chemistry because, dare I say it, it can appear a bit dull. What Lane does wonderfully well is to

Wonderdog - Jules Howard *****

As Jules Howard acknowledges, there have been plenty of books about what makes a dog tick, whether they are training manuals, evolutionary examinations such as The Wolf Within or ethological studies of humans' closest animal partner such as If Dogs Could Talk . But most of Jules Howard's Wonderdog takes us into the roles that dogs have played in advancing science. Some of this material is fairly gruesome. We discover, for example, dogs' importance to medical research, particularly at a time when experimenting on animals had few ethical limits. What makes the book enjoyable is the way the Howard ties in his history with engaging stories - such as the brown dog statue, put up in Battersea in 1907 as a memorial to a dog horribly misused by vivisectionists, only for the statue to be destroyed by the council to bring an end to frequent attacks by infuriated medical students. (The statue has since been replaced.) Similarly, dogs have proved valuable in widening our understandin