Skip to main content

Cosmic Odyssey - Linda Schweizer *****

Based on its generic-sounding title, you might expect this to be a broad-ranging history of astrophysical concepts – and if you buy it on that basis you won’t be disappointed. From stellar evolution and the structure of galaxies to supermassive black holes, quasars and the expansion of the universe, Linda Schweizer shows – in admirably non-technical detail – how our understanding of the fundamental pillars of modern astronomy developed over several decades from a standing start.

In spite of that, this isn’t a generic history at all. It has a very specific remit, encapsulated in the subtitle: ‘How Intrepid Astronomers at Palomar Observatory Changed our View of the Universe’. California’s Palomar Observatory is home to the ‘200-inch’ (5.1 metres – the diameter of the main mirror) Hale telescope, which was the premier instrument for optical astronomy from its inauguration in 1949 until the Hubble telescope became fully operational 45 years later. This was perhaps the most eventful and fast-moving period in the history of astrophysics, thanks in part to the power of the Hale telescope itself, coupled with the advent of complementary new techniques such as radio astronomy, and a general increase in support for space-related research around the world.

As the subtitle implies, the book describes the science from the point of view of the astronomers involved – not so much in traditional biographical style, but showing how they made one astonishing breakthrough after another by bouncing ideas off each other and following hunches. I’m not convinced that ‘intrepid’ is quite the right word, though. In a job where there’s no actual physical danger, I guess intrepid means not being afraid to follow up unpopular, potentially career-destroying theories. But only one of the protagonists, Halton Arp, really matches that description – and most of his wackier ideas turned out to be wrong.

On the other hand, the people who made the great discoveries, like quasars, weren’t really taking risks at all. The outlandishness was all in the data, not their interpretation of it. Even so, they still made their share of mistakes, such as when Allan Sandage over-enthusiastically proclaimed that every star-like object with a high UV-to-blue ratio was a quasar (actually most of them are just stars). In her preface, Schweizer describes the Palomar scientists as ‘eccentric yet inspiring’ – which wouldn’t have looked as good as ‘intrepid’ on the cover, but is probably closer to the truth.

The period covered – essentially the second half of the 20th century – is sufficiently recent that many of the key players are still alive, or were when Schweizer started collecting material for the book, so she was able to capture valuable recollections from people like Sandage and Arp before they were lost to history. For the same reason, the book will be something of a nostalgia trip for older readers, who may remember some of the discoveries from the time they were made.

In my own case, the book brought back vivid memories of my time as an astronomy postdoc in the 1980s, when I crossed paths with several of the characters mentioned – and I fully concur with Schweizer’s ‘eccentric yet inspiring’ sentiment. Alar Toomre, one of the main protagonists of her chapter on interacting galaxies, was name-checked in my first published paper for his ‘enthusiastic help in understanding the results’. That was a euphemistic way of saying he did all the hard work for me, in the longest private letter I’ve ever received – eight typewritten pages plus 16 pages of diagrams.

In all there are 12 thematically organised chapters, two of them on subjects I’ve got some professional knowledge of – galactic structure and dynamics – and others that I’m really no more knowledgeable about than a general reader, such as solar system physics or stellar nucleosynthesis. Viewed from either perspective, I found Schweizer’s style clear, intelligent and informative. I’d heartily recommend the book to anyone with an interest in astronomy that goes deeper than gazing at pretty pictures (of which this book has its share, though ironically most of them are credited to the Hubble rather than Palomar telescope).


Hardback:

Kindle:  
Using these links earns us commission at no cost to you
Review by Andrew May

Comments

Popular posts from this blog

Sticky - Laurie Winkless *****

There has been a suggestion doing the rounds that if you don't get into a book after the first few pages, you should give it up - because life's too short. If I'd followed this suggestion, I wouldn't have discovered what a brilliant book Sticky is. I'll get back to that, but it's worth saying first why Laurie Winkless's book on what makes things sticky, produces friction and grip - or for that matter lubricates - is so good. Without doubt, Winkless is great at bringing storytelling to her writing. She frames her information well with interviews, visits to places and her personal experiences. But of itself, that isn't enough. The reason, for example, I was captivated by her section on the remarkable (though oddly, given the book's title, entirely non-sticky) adhesive qualities of the gecko's foot was really about the way that Winkless takes us through the different viewpoints on how the foot's adhesion works. We get plenty of science and also

Laurie Winkless - Four Way Interview

Laurie Winkless ( @laurie_winkless ) is an Irish physicist and author. After a physics degree and a masters in space science, she joined the UK’s National Physical Laboratory as a research scientist, specialising in functional materials. Now based in New Zealand, Laurie has been communicating science to the public for 15 years. Since leaving the lab, she has worked with scientific institutes, engineering companies, universities, and astronauts, amongst others. Her writing has featured in outlets including Forbes, Wired, and Esquire, and she appeared in The Times magazine as a leading light in STEM. Laurie’s first book was Science and the City , and her new title is Sticky , also published by Bloomsbury. Why science? I was a very curious kid: always asking questions about how things worked. I suspect I drove my parents mad, but they never showed it. Instead, they encouraged me to explore those questions. From taking me to the library every week, to teaching me how to use different tools

The Car That Knew Too Much - Jean-François Bonnefon ****

This slim book is unusual in taking us through the story of a single scientific study - and it's very informative in the way that it does it. The book makes slightly strange reading, as I was one of the participants in the study - but that's not surprising. According to Jean-François Bonnefon, by the time the book was published, around 100 million people worldwide had taken part in the Moral Machine experiment. The idea behind the study was to see how the public felt self-driving cars should make what are effectively moral decisions. Specifically, in a dilemma where there was a choice to be made between, say, killing one or other person or groups of people, how should the car decide? As a concept, Bonnefon makes it clear this is a descendent of the classic 'trolley' problem where participants are asked to decide, for example, whether or not to switch the points so a tram that is currently going to kill five people will be switched to a track where it will kill one perso