Skip to main content

Cosmic Odyssey - Linda Schweizer *****

Based on its generic-sounding title, you might expect this to be a broad-ranging history of astrophysical concepts – and if you buy it on that basis you won’t be disappointed. From stellar evolution and the structure of galaxies to supermassive black holes, quasars and the expansion of the universe, Linda Schweizer shows – in admirably non-technical detail – how our understanding of the fundamental pillars of modern astronomy developed over several decades from a standing start.

In spite of that, this isn’t a generic history at all. It has a very specific remit, encapsulated in the subtitle: ‘How Intrepid Astronomers at Palomar Observatory Changed our View of the Universe’. California’s Palomar Observatory is home to the ‘200-inch’ (5.1 metres – the diameter of the main mirror) Hale telescope, which was the premier instrument for optical astronomy from its inauguration in 1949 until the Hubble telescope became fully operational 45 years later. This was perhaps the most eventful and fast-moving period in the history of astrophysics, thanks in part to the power of the Hale telescope itself, coupled with the advent of complementary new techniques such as radio astronomy, and a general increase in support for space-related research around the world.

As the subtitle implies, the book describes the science from the point of view of the astronomers involved – not so much in traditional biographical style, but showing how they made one astonishing breakthrough after another by bouncing ideas off each other and following hunches. I’m not convinced that ‘intrepid’ is quite the right word, though. In a job where there’s no actual physical danger, I guess intrepid means not being afraid to follow up unpopular, potentially career-destroying theories. But only one of the protagonists, Halton Arp, really matches that description – and most of his wackier ideas turned out to be wrong.

On the other hand, the people who made the great discoveries, like quasars, weren’t really taking risks at all. The outlandishness was all in the data, not their interpretation of it. Even so, they still made their share of mistakes, such as when Allan Sandage over-enthusiastically proclaimed that every star-like object with a high UV-to-blue ratio was a quasar (actually most of them are just stars). In her preface, Schweizer describes the Palomar scientists as ‘eccentric yet inspiring’ – which wouldn’t have looked as good as ‘intrepid’ on the cover, but is probably closer to the truth.

The period covered – essentially the second half of the 20th century – is sufficiently recent that many of the key players are still alive, or were when Schweizer started collecting material for the book, so she was able to capture valuable recollections from people like Sandage and Arp before they were lost to history. For the same reason, the book will be something of a nostalgia trip for older readers, who may remember some of the discoveries from the time they were made.

In my own case, the book brought back vivid memories of my time as an astronomy postdoc in the 1980s, when I crossed paths with several of the characters mentioned – and I fully concur with Schweizer’s ‘eccentric yet inspiring’ sentiment. Alar Toomre, one of the main protagonists of her chapter on interacting galaxies, was name-checked in my first published paper for his ‘enthusiastic help in understanding the results’. That was a euphemistic way of saying he did all the hard work for me, in the longest private letter I’ve ever received – eight typewritten pages plus 16 pages of diagrams.

In all there are 12 thematically organised chapters, two of them on subjects I’ve got some professional knowledge of – galactic structure and dynamics – and others that I’m really no more knowledgeable about than a general reader, such as solar system physics or stellar nucleosynthesis. Viewed from either perspective, I found Schweizer’s style clear, intelligent and informative. I’d heartily recommend the book to anyone with an interest in astronomy that goes deeper than gazing at pretty pictures (of which this book has its share, though ironically most of them are credited to the Hubble rather than Palomar telescope).


Hardback:

Kindle:  
Using these links earns us commission at no cost to you
Review by Andrew May

Comments

Popular posts from this blog

A Citizen's Guide to Artificial Intelligence - John Zerilli et al ****

The cover of this book set off a couple of alarm bells. Not only does that 'Citizen's Guide' part of the title raise the spectre of a pompous book-length moan, the list of seven authors gives the feel of a thesis written by committee. It was a real pleasure, then, to discover that this is actually a very good book. I ought to say straight away what it isn't - despite that title, it isn't a book written in a style that's necessarily ideal for a general audience. Although the approach is often surprisingly warm and human, it is an academic piece of writing. As a result, in places it's a bit of a trudge to get through it. Despite this, though, the topic is important enough - and, to be fair, the way it is approached is good enough - that it deserves to be widely read. John Zerilli et al give an effective, very balanced exploration of artificial intelligence. Although not structured as such, it's a SWOT analysis, giving us the strengths, weaknesses, opportun

Grace Lindsay - Four Way Interview

Grace Lindsay is a computational neuroscientist currently based at University College, London. She completed her PhD at the Centre for Theoretical Neuroscience at Columbia University, where her research focused on building mathematical models of how the brain controls its own sensory processing. Before that, she earned a bachelor’s degree in Neuroscience from the University of Pittsburgh and received a research fellowship to study at the Bernstein Center for Computational Neuroscience in Freiburg, Germany. She was awarded a Google PhD Fellowship in Computational Neuroscience in 2016 and has spoken at several international conferences. She is also the producer and co-host of Unsupervised Thinking , a podcast covering topics in neuroscience and artificial intelligence. Her first book is Models of the Mind . Why science? I started my undergraduate degree as a neuroscience and philosophy double major and I think what drew me to both topics was the idea that if we just think rigorously enou

The Science of Can and Can't - Chiara Marletto *****

Without doubt, Chiara Marletto has achieved something remarkable here, though the nature of the topic does not make for an easy read. The book is an attempt to popularise constructor theory - a very different approach to physics, which Oxford quantum physicist David Deutsch has developed with Marletto. Somewhat oddly, the book doesn't use the term constructor theory, but rather the distinctly clumsier 'science of can and can't'. The idea is that physics is formulated in a way that is inherently limited because it depends on using mechanisms that follows the progress of dynamic systems using the laws of physics. This method isn't applicable in circumstances where either something may happen, but won't necessarily, nor where something isn't allowed to happen (hence the science of can and can't, which probably should be the science of could and can't if we are going to be picky). Deutsch and Marletto have proposed a way of using 'counterfactuals'