Skip to main content

Artificial Intelligence - Melanie Mitchell *****

As Melanie Mitchell makes plain, humans have limitations in their visual abilities, typified by optical illusions, but artificial intelligence (AI) struggles at a much deeper level with recognising what's going on in images. Similarly in some ways, the visual appearance of this book misleads. It's worryingly fat and bears the ascetic light blue cover of the Pelican series, which since my childhood have been markers of books that were worthy but have rarely been readable. This, however, is an excellent book, giving a clear picture of how many AI systems go about their business and the huge problems designers of such systems face.

Not only does Mitchell explain the main approaches clearly, her account is readable and engaging. I read a lot of popular science books, and it's rare that I keep wanting to go back to one when I'm not scheduled to be reading it - this is one of those rare examples.

We discover how AI researchers have achieved the apparently remarkable abilities of, for example, the Go champion AlphaGo, or the Jeopardy! playing Watson. In each case these systems are tightly designed for a particular purpose and arguably have no intelligence in the broad sense.  As for what's probably the most impressively broad AI application of modern times, self-driving cars, Mitchell emphasises how limited they truly are. Like so many AI applications, the hype far exceeds the reality - when companies and individuals talk of self-driving cars being commonplace in a few years' time, it's quite clear that this could only be the case in a tightly controlled environment.

One example, that Mitchell explores in considerable detail are so-called adversarial attacks, a particularly AI form of hacking where, for example, those in the know can make changes to images that are invisible to the human eye but that force an AI system to interpret what they are seeing as something totally different. It's a sobering thought that, for example, by simply applying a small sticker to a stop sign on the road - unnoticeable to a human driver - an adversarial attacker can turn the sign into a speed limit sign as far as an AI system is concerned, with potentially fatal consequences.

Don't get me wrong, Mitchell, a professor of computer science who has specialised in AI, is no AI luddite. But unlike many of the enthusiasts in the field (or, for that matter, those who are terrified AI is about to take over the world), she is able to give us a realistic, balanced view, showing us just how far AI has to go to come close to the more general abilities humans make use of all the time even in simple tasks. AI does a great job, for example, in something like Siri or Google Translate or unlocking a phone with a face - but AI systems still have no concept of, for example, understanding (as opposed to recognising) what is in an image. Mitchell makes it clear that where systems learn from large amounts of data, it is usually impossible to uncover how they are making decisions (which makes the EU's law requiring transparent AI decisions pretty much impossible to implement), so we really shouldn't trust them with important outcomes as they could easily be basing their outcomes on totally irrelevant inputs.

Apart from occasionally finding the explanations of the workings of types of neural network a little hard to follow, the only thing that made me raise an eyebrow was being told that Marvin Minsky 'coined the phrase "suitcase word"' - I would have thought 'derived* the phrase from Lewis Carroll's term "portmanteau word"' would have been closer to reality.

There have been good books on the basics of AI already, and excellent ones on the problems that 'deep learning' and big data systems throw up. But without a doubt, Mitchell's book sets a new standard in giving an understanding of what's possible and how difficult it is to go further. It should be read by every journalist, PR person and politician before they pump out yet more hype on the AI future. Recommended.

* Polite term
Hardback:   

Kindle 
Using these links earns us commission at no cost to you

Comments

Popular posts from this blog

David Spiegelhalter Five Way interview

Professor Sir David Spiegelhalter FRS OBE is Emeritus Professor of Statistics in the Centre for Mathematical Sciences at the University of Cambridge. He was previously Chair of the Winton Centre for Risk and Evidence Communication and has presented the BBC4 documentaries Tails you Win: the Science of Chance, the award-winning Climate Change by Numbers. His bestselling book, The Art of Statistics , was published in March 2019. He was knighted in 2014 for services to medical statistics, was President of the Royal Statistical Society (2017-2018), and became a Non-Executive Director of the UK Statistics Authority in 2020. His latest book is The Art of Uncertainty . Why probability? because I have been fascinated by the idea of probability, and what it might be, for over 50 years. Why is the ‘P’ word missing from the title? That's a good question.  Partly so as not to make it sound like a technical book, but also because I did not want to give the impression that it was yet another book

The Genetic Book of the Dead: Richard Dawkins ****

When someone came up with the title for this book they were probably thinking deep cultural echoes - I suspect I'm not the only Robert Rankin fan in whom it raised a smile instead, thinking of The Suburban Book of the Dead . That aside, this is a glossy and engaging book showing how physical makeup (phenotype), behaviour and more tell us about the past, with the messenger being (inevitably, this being Richard Dawkins) the genes. Worthy of comment straight away are the illustrations - this is one of the best illustrated science books I've ever come across. Generally illustrations are either an afterthought, or the book is heavily illustrated and the text is really just an accompaniment to the pictures. Here the full colour images tie in directly to the text. They are not asides, but are 'read' with the text by placing them strategically so the picture is directly with the text that refers to it. Many are photographs, though some are effective paintings by Jana Lenzová. T

Everything is Predictable - Tom Chivers *****

There's a stereotype of computer users: Mac users are creative and cool, while PC users are businesslike and unimaginative. Less well-known is that the world of statistics has an equivalent division. Bayesians are the Mac users of the stats world, where frequentists are the PC people. This book sets out to show why Bayesians are not just cool, but also mostly right. Tom Chivers does an excellent job of giving us some historical background, then dives into two key aspects of the use of statistics. These are in science, where the standard approach is frequentist and Bayes only creeps into a few specific applications, such as the accuracy of medical tests, and in decision theory where Bayes is dominant. If this all sounds very dry and unexciting, it's quite the reverse. I admit, I love probability and statistics, and I am something of a closet Bayesian*), but Chivers' light and entertaining style means that what could have been the mathematical equivalent of debating angels on