Skip to main content

The Demon in the Machine - Paul Davies *****

Physicists have a habit of dabbling in biology and, perhaps surprisingly, biologists tend to be quite tolerant of it. (I find it hard to believe the reverse would be true if biologists tried to do physics.) Perhaps one reason for that tolerance is Schrödinger’s lecture series and book What is Life?, which had a huge impact on molecular biology and with a reference to which, not surprisingly, Paul Davies begins his fascinating book. 

At the heart of the The Demon in the Machine (we'll come back to that demon in a moment) is the relationship between life and information. In essence, Davies points out that if we try to reduce life to its simple physical components it is like trying to work with a computer that has no software. The equivalent of software here is information, not just in the best publicised aspect of the information stored in the DNA, but on a far broader scale, operating in networks across the organism.

This information and its processing gives life its emergent complexity, which is why, Davies suggests, Dawkins-style reductionism to the gene level entirely misses the point. What's more, the biological setup provides a particularly sophisticated relationship between information and the physical aspects of the organism because the information can modify itself - it's as if a computer program could redesign itself as it went along.

The subtitle 'how hidden webs of information are solving the mystery of life' probably over-promises. As Davies makes clear, we still have no idea how life came into being in the first place. However, by bringing in this physical/information aspect we at least can get a better grip on the workings of the molecular machines inside organisms and how biology can do so much with so little. Here's where the demon in the title comes in. This is Maxwell's demon, the hypothetical miniature being dreamed up by the great nineteenth century Scottish physicist.

Maxwell's demon has the remarkable ability to tweak the second law of thermodynamics allowing, for example, heat to flow from a colder to a hotter body or, to put it another way, providing a mechanism for entropy (the measure of disorder in a system) to spontaneously decrease. Entropy has a strong (negative) relationship with information and Davies shows how miniature biological systems act in a demon-like fashion to effectively manage information.

There's lots to like here, from the best explanation I've seen of the relationship of information and entropy to fascinating coverage of how far we’ve gone beyond the selfish gene. This is not just about basic epigenetic processes (operating outside of genes, switching them on and off and so on) but how, for example, the electric field of a (biological) cell apparently has a role to play in ‘sculpting‘ the physical structure of an organism.

My only real complaint is that in part of the chapter Enter the Demon dealing with information engines and most of the chapter The Logic of Life, describing the relationship between living organisms and computation, Davies fails to put across clearly just what is going on. I read it, but didn't feel I gained as much information (ironically) as I needed from it. There was also one very odd statistic. We're told the information in a strand of DNA contains 'about 2 billion bits - more than the information contained in all the books in the Library of Congress.' There are about 32 million books in the Library of Congress, so that gives us on average 62.5 bits per book. Unless those are very short books, some information has gone astray.

Really interesting, then, from a transformed understanding of the importance of information in living organisms through to Davies' speculation on whether biological systems need new physical laws to describe them. But expect to come away feeling you need to read it again to be sure what it said.
Hardback 

Kindle 
Using these links earns us commission at no cost to you
Review by Brian Clegg

Comments

  1. Nick lane argues in his book The Vital Question that biological systems are not really working to decrease entropy they exist because they essentially dont violate the second law of thermodynamics . I wonder how that reconciles with the theory here

    ReplyDelete
  2. I find it difficult to follow some of this stuff. Not the fluffy conceptual models, but the simple aspergers stuff.

    eg p95, text describing Fig 11, says 'barred lines [indicate inhibition]'. Then seems to use a different term - 'loopy broken arrows' to denote self inhibition. Change of term is confusing but not fatal.

    But Fig 11 contains no broken or barred loopy arrows, only solid ones, thus indicating self activation, not self inhibition. Again, I guess, not fatal, if the reader is expected to be alert for errors or misprints.

    But table 2, P96 shows that in at least 2 cases, the loop is self suppression, so the loop should be broken or barred. Still not quite fatal.

    But then, following Table 2 and Fig 11 together, node G suddenly gets activated in step 8, although in Fig 11 there is no 'incoming [activation] arrow' pointing at it, except for it's own self activation loop, which can never be initiated.

    So what's going on? AFAIK just errors, which I'd hope not to have been included in this book.

    So, how do we read this book? Perhaps best just to gloss over all the clever diagrams & tables, say 'Gee, Whizz, that's all amazing!'

    OTOH if I'm really not understanding a perfectly valid exposition, I'd love to know.

    ReplyDelete

Post a Comment

Popular posts from this blog

Roger Highfield - Stephen Hawking: genius at work interview

Roger Highfield OBE is the Science Director of the Science Museum Group. Roger has visiting professorships at the Department of Chemistry, UCL, and at the Dunn School, University of Oxford, is a Fellow of the Academy of Medical Sciences, and a member of the Medical Research Council and Longitude Committee. He has written or co-authored ten popular science books, including two bestsellers. His latest title is Stephen Hawking: genius at work . Why science? There are three answers to this question, depending on context: Apollo; Prime Minister Margaret Thatcher, along with the world’s worst nuclear accident at Chernobyl; and, finally, Nullius in verba . Growing up I enjoyed the sciencey side of TV programmes like Thunderbirds and The Avengers but became completely besotted when, in short trousers, I gazed up at the moon knowing that two astronauts had paid it a visit. As the Apollo programme unfolded, I became utterly obsessed. Today, more than half a century later, the moon landings are

Space Oddities - Harry Cliff *****

In this delightfully readable book, Harry Cliff takes us into the anomalies that are starting to make areas of physics seems to be nearing a paradigm shift, just as occurred in the past with relativity and quantum theory. We start with, we are introduced to some past anomalies linked to changes in viewpoint, such as the precession of Mercury (explained by general relativity, though originally blamed on an undiscovered planet near the Sun), and then move on to a few examples of apparent discoveries being wrong: the BICEP2 evidence for inflation (where the result was caused by dust, not the polarisation being studied),  the disappearance of an interesting blip in LHC results, and an apparent mistake in the manipulation of numbers that resulted in alleged discovery of dark matter particles. These are used to explain how statistics plays a part, and the significance of sigmas . We go on to explore a range of anomalies in particle physics and cosmology that may indicate either a breakdown i

Splinters of Infinity - Mark Wolverton ****

Many of us who read popular science regularly will be aware of the 'great debate' between American astronomers Harlow Shapley and Heber Curtis in 1920 over whether the universe was a single galaxy or many. Less familiar is the clash in the 1930s between American Nobel Prize winners Robert Millikan and Arthur Compton over the nature of cosmic rays. This not a book about the nature of cosmic rays as we now understand them, but rather explores this confrontation between heavyweight scientists. Millikan was the first in the fray, and often wrongly named in the press as discoverer of cosmic rays. He believed that this high energy radiation from above was made up of photons that ionised atoms in the atmosphere. One of the reasons he was determined that they should be photons was that this fitted with his thesis that the universe was in a constant state of creation: these photons, he thought, were produced in the birth of new atoms. This view seems to have been primarily driven by re