Skip to main content

Paul Parsons - Four Way Interview

Dr Paul Parsons was a theoretical cosmologist at the University of Sussex, and is now a science journalist and author. He has contributed articles to the Guardian, the Daily Telegraph and New Scientist, and has served as editor of the award-winning BBC science magazine Focus and as managing editor of BBC Sky at Night magazine. His previous books include The Periodic Table, How to Destroy the Universe, The Science of Doctor Who (longlisted for the 2007 Royal Society Prize for Science Books) and 30-Second Theories: The 50 Most Thought-provoking Theories in Science. His latest book is The Beginning and the End of Everything.

Why science?


The short answer is I’m very lazy! I just don’t seem to get very much work done if I don’t find the work obsessively, head-hurtingly interesting. I’ve loved maths, physics and astronomy since school. Understanding how things work, and using that knowledge to make predictions and solve mysteries is fascinating to me. And the systematic nature of maths and the physical sciences is especially appealing. So that’s what I studied at university, and it’s what I’ve tried to make a part of my work (if you can call it that) ever since – whether that’s actually doing science or writing about it.

Why this book?

That’s a good question. In the past I’ve often lamented the appearance of so many new books all telling the story of the origin and evolution of the universe. The Beginning and the End of Everythingis a bit different for a couple of reasons. Firstly, it tries to include or at least give more weight to the end of the universe, and how that fits into the story – and how we can speculate about the ultimate demise of the cosmos by combining our current theories with the observations that we’re able to make. But also, there have been some interesting new discoveries and some interesting new mysteries that have emerged in the last few years. So the time seemed right to pull all of the latest new findings and new thinking together and take stock of how it all changes the story of the universe as we understand it. That’s what I’ve tried to do with the new book.

What’s next?

I’m working on a couple of projects for packagers – essentially book projects that they’re producing for other outlets – which I’m probably not allowed to elaborate on just yet. After that, I’m not sure. Lots of possible ideas kicking around, but so far nothing fleshed out in sufficient detail for a book. My day job involves a lot of statistical analysis, and I’ve often thought there’s room for more popular writing in this area. If coverage in the newspapers is anything to go by, the general standard of the public understanding of stats and probability still seems pretty low. 


What's exciting you at the moment?


There have been a lot of new discoveries lately. I think the most exciting of these for me is the detection of gravitational waves – ripples in the fabric of space and time itself, that were predicted by Einstein’s general theory of relativity. In the early 1990s, I did my undergraduate project on modelling the emission of gravitational waves by dense, dead stellar objects called neutron stars. It was thought, or perhaps hoped, that the detection of these waves was just a few years away back then, rather than the decades that it actually turned out to be – they were finally seen experimentally in 2015. Now the study of gravitational waves looks set to open a new window through which to observe the universe, in much the same way that neutrino astronomy did back in the 60s and 70s. Measuring the gravitational waves from objects in far-off galaxies promises to give us more accurate determinations of cosmic distances. This will refine our estimates of how fast the universe is expanding and, crucially, how fast that expansion is accelerating – which will help to pin down the nature of dark energy. This mysterious stuff is thought to account for around 70 percent of the mass-energy of the universe. It’s dominated the evolution of our universe and it will probably have the final say in how the universe actually ends. Understanding its nature is one of the biggest mysteries in modern cosmology today.








Comments

Popular posts from this blog

Rakhat-Bi Abdyssagin Five Way Interview

Rakhat-Bi Abdyssagin (born in 1999) is a distinguished composer, concert pianist, music theorist and researcher. Three of his piano CDs have been released in Germany. He started his undergraduate degree at the age of 13 in Kazakhstan, and having completed three musical doctorates in prominent Italian music institutions at the age of 20, he has mastered advanced composition techniques. In 2024 he completed a PhD in music at the University of St Andrews / Royal Conservatoire of Scotland (researching timbre-texture co-ordinate in avant- garde music), and was awarded The Silver Medal of The Worshipful Company of Musicians, London. He has held visiting affiliations at the Universities of Oxford, Cambridge and UCL, and has been lecturing and giving talks internationally since the age of 13. His latest book is Quantum Mechanics and Avant Garde Music . What links quantum physics and avant-garde music? The entire book is devoted to this question. To put it briefly, there are many different link...

The Bright Side - Sumit Paul-Choudhury ***

When I first saw The Bright Side (the subtitle doesn't help), I was worried it was a self-help manual, a format that rarely contains good science. In reality, Sumit Paul-Choudhury does not give us a checklist for becoming an optimist or anything similar - and there is a fair amount of science content. But to be honest, I didn't get on very well with this book. What Paul-Choudhury sets out to do is to both identify what optimism is and to assess its place in a world where we are beset with big problems such as climate change (which he goes into in some detail) that some activists position as an existential threat. This is all done in a friendly, approachable fashion. In that sense it's a classic pop-psychology title. For me, Paul-Choudhury certainly has it right about the lack of logic of extreme doom-mongers, such as Extinction Rebellion and teenage climate protestors, and his assessment of the nature of optimism seems very reasonable, if presented at a fairly overview leve...

Everything is Predictable - Tom Chivers *****

There's a stereotype of computer users: Mac users are creative and cool, while PC users are businesslike and unimaginative. Less well-known is that the world of statistics has an equivalent division. Bayesians are the Mac users of the stats world, where frequentists are the PC people. This book sets out to show why Bayesians are not just cool, but also mostly right. Tom Chivers does an excellent job of giving us some historical background, then dives into two key aspects of the use of statistics. These are in science, where the standard approach is frequentist and Bayes only creeps into a few specific applications, such as the accuracy of medical tests, and in decision theory where Bayes is dominant. If this all sounds very dry and unexciting, it's quite the reverse. I admit, I love probability and statistics, and I am something of a closet Bayesian*), but Chivers' light and entertaining style means that what could have been the mathematical equivalent of debating angels on...