Skip to main content

Paul Parsons - Four Way Interview

Dr Paul Parsons was a theoretical cosmologist at the University of Sussex, and is now a science journalist and author. He has contributed articles to the Guardian, the Daily Telegraph and New Scientist, and has served as editor of the award-winning BBC science magazine Focus and as managing editor of BBC Sky at Night magazine. His previous books include The Periodic Table, How to Destroy the Universe, The Science of Doctor Who (longlisted for the 2007 Royal Society Prize for Science Books) and 30-Second Theories: The 50 Most Thought-provoking Theories in Science. His latest book is The Beginning and the End of Everything.

Why science?


The short answer is I’m very lazy! I just don’t seem to get very much work done if I don’t find the work obsessively, head-hurtingly interesting. I’ve loved maths, physics and astronomy since school. Understanding how things work, and using that knowledge to make predictions and solve mysteries is fascinating to me. And the systematic nature of maths and the physical sciences is especially appealing. So that’s what I studied at university, and it’s what I’ve tried to make a part of my work (if you can call it that) ever since – whether that’s actually doing science or writing about it.

Why this book?

That’s a good question. In the past I’ve often lamented the appearance of so many new books all telling the story of the origin and evolution of the universe. The Beginning and the End of Everythingis a bit different for a couple of reasons. Firstly, it tries to include or at least give more weight to the end of the universe, and how that fits into the story – and how we can speculate about the ultimate demise of the cosmos by combining our current theories with the observations that we’re able to make. But also, there have been some interesting new discoveries and some interesting new mysteries that have emerged in the last few years. So the time seemed right to pull all of the latest new findings and new thinking together and take stock of how it all changes the story of the universe as we understand it. That’s what I’ve tried to do with the new book.

What’s next?

I’m working on a couple of projects for packagers – essentially book projects that they’re producing for other outlets – which I’m probably not allowed to elaborate on just yet. After that, I’m not sure. Lots of possible ideas kicking around, but so far nothing fleshed out in sufficient detail for a book. My day job involves a lot of statistical analysis, and I’ve often thought there’s room for more popular writing in this area. If coverage in the newspapers is anything to go by, the general standard of the public understanding of stats and probability still seems pretty low. 


What's exciting you at the moment?


There have been a lot of new discoveries lately. I think the most exciting of these for me is the detection of gravitational waves – ripples in the fabric of space and time itself, that were predicted by Einstein’s general theory of relativity. In the early 1990s, I did my undergraduate project on modelling the emission of gravitational waves by dense, dead stellar objects called neutron stars. It was thought, or perhaps hoped, that the detection of these waves was just a few years away back then, rather than the decades that it actually turned out to be – they were finally seen experimentally in 2015. Now the study of gravitational waves looks set to open a new window through which to observe the universe, in much the same way that neutrino astronomy did back in the 60s and 70s. Measuring the gravitational waves from objects in far-off galaxies promises to give us more accurate determinations of cosmic distances. This will refine our estimates of how fast the universe is expanding and, crucially, how fast that expansion is accelerating – which will help to pin down the nature of dark energy. This mysterious stuff is thought to account for around 70 percent of the mass-energy of the universe. It’s dominated the evolution of our universe and it will probably have the final say in how the universe actually ends. Understanding its nature is one of the biggest mysteries in modern cosmology today.








Comments

Popular posts from this blog

Target Earth – Govert Schilling *****

I was biased in favour of this great little book even before I started to read it, simply because it’s so short. I’m sure that a lot of people who buy popular science books just want an overview and taster of a subject that’s brand new to them – and that’s likely to work best if the author keeps it short and to the point. Of course, you may want to dig deeper in areas that really interest you, but that’s what Google is for. That basic principle aside, I’m still in awe at how much substance Govert Schilling has managed to cram into this tiny book. It’s essentially about all the things (natural things, I mean, not UFOs or space junk) that can end up on Earth after coming down from outer space. That ranges from the microscopically small particles of cosmic dust that accumulate in our gutters, all the way up to the ten kilometre wide asteroid that wiped out the dinosaurs. Between these extremes are two topics that we’ve reviewed entire books about recently: meteorites ( The Meteorite Hunt...

The Decline and Fall of the Human Empire - Henry Gee ****

In his last book, Henry Gee impressed with his A (Very) Short History of Life on Earth - this time he zooms in on one very specific aspect of life on Earth - humans - and gives us not just a history, but a prediction of the future - our extinction. The book starts with an entertaining prologue, to an extent bemoaning our obsession with dinosaurs, a story that leads, inexorably towards extinction. This is a fate, Gee points out, that will occur for every species, including our own. We then cover three potential stages of the rise and fall of humanity (the book's title is purposely modelled on Gibbon) - Rise, Fall and Escape. Gee's speciality is palaeontology and in the first section he takes us back to explore as much as we can know from the extremely patchy fossil record of the origins of the human family, the genus Homo and the eventual dominance of Homo sapiens , pushing out any remaining members of other closely related species. As we move onto the Fall section, Gee gives ...

The New Lunar Society - David Mindell *****

David Mindell's take on learning lessons for the present from the eighteenth century Lunar Society could easily have been a dull academic tome, but instead it was a delight to read. Mindell splits the book into a series of short essay-like chapters which includes details of the characters involved in and impact of the Lunar Society, which effectively kick-started the Industrial Revolution, interwoven with an analysis of the decline of industry in modern twentieth and twenty-first century America, plus the potential for taking a Lunar Society approach to revitalise industry for the future. We see how a group of men (they were all men back then) based in the English Midlands (though with a strong Scottish contingent) brought together science, engineering and artisan skills in a way that made the Industrial Revolution and its (eventual) impact on improving the lot of the masses possible. Interlaced with this, Mindell shows us how 'industrial' has become something of a dirty wo...