Skip to main content

Making the Monster - Kathryn Harkup ****

Subtitled 'the science behind Mary Shelley's Frankenstein', what we get here is a mix of a biography of Mary Shelley and historical context for the various aspects of science that feature in Frankenstein, from electricity to preserving organs after death. I found this a much more approachable work than the annotated Frankenstein - in fact the perfect title would probably have been a combination of the two, with annotation based on Kathryn Harkup's words plus the text of the original.

I have given the book four stars despite some reservations, because the good bits were very readable and interesting. The biographical sections filled in a lot I didn't know about Mary, her parents and her relationship with Shelley and his family. What's more, Harkup manages to make this engaging in a way a lot of the 'life story' parts of popular science tend not to achieve. The other chapters that really engaged me were the straight science ones - for example, the chapter on electricity, now so central to the Frankenstein story (though apparently it's not clear in the book that this is what was used) both gives a lot of detail on how electricity was gradually understood and on the way it was treated as a mix of entertainment and science at the time.

The medical sections I enjoyed less - partly because I'm no fan of books on medical topics and partly because they were far less of a direct link between the fiction and the medical experience of the time, given that what Frankenstein does is so ridiculously far from possibility. One of these section - covering Hunter and others dealing in human dissection - was a tad slow, as there seemed to be a lot of repetition. Too much detail for me, certainly.

My reservations otherwise tend to be in small details. Harkup seems not to understand science fiction. She comments 'Frankenstein is often cited as the first science-fiction novel [hyphenated? really?], but there is much scientific fact to be found within its pages,' as if it is unusual for science fiction to feature factual science. If there weren't any science, it would be fantasy.

There is also something of a tendency to overplay things. We are told that Mary was brought up in a family with 'very restricted income' - which, bearing in mind her brothers went to boarding school and Mary had 'tutors in music and drawing as well as a governess' would probably have been considered a little far-fetched by her working class contemporaries. Similarly, there is too much weight given to the importance of alchemy. And at one point Harkup appears to confuse Roger Bacon and Francis Bacon.

One last observation - Harkup never says how turgid Frankenstein is to modern eyes. I know the aim here isn't lit crit, but the novel is a painful slog to read now. The ideas are marvellous, but the writing style has not aged well.

Nonetheless, Frankenstein is important in the history of science fiction, and there is genuinely interesting biography and science to be found in Making the Monster. Mary's achievements do seem remarkable, given the difficulties she endured from her late teens onwards. I'd recommend this book for anyone who wants to put the novel into context.

Hardback:  


Kindle:  

Audio download:  
Using these links earns us commission at no cost to you


Review by Brian Clegg

Comments

Popular posts from this blog

I Wish They'd Taught Me That - Robin Pemantle and Julian Gould ***

Subtitled 'overlooked and omitted topics in mathematics', the obvious concern is that there is a good reason these topics are overlooked and omitted. Thankfully, this is not the case, but it's fair to say that despite attempts to dress it up that way, this isn't a recreational maths book. There's a fair description in the blurb: 'the topics which every undergraduate mathematics student "should" know, but has probably never encountered... magnificent secrets that are beautiful, useful and accessible.' As someone who many years ago did a degree with a fair amount of mathematics in it, I think it probably would have appealed back then - though to be honest a lot of it has disappeared from my memory, strongly reducing the entertainment value. Here's an example. The first real page contains the sentence:  'If you are handed a real number 𝓍 ∈  ⁠ ⁠,  one way to tell if 𝓍 is rational or irrational is to look at sequences of rational numbers q n ...

Why Nobody Understands Quantum Physics - Frank Verstraete and Céline Broeckaert **

It's with a heavy heart that I have to say that I could not get on with this book. The structure is all over the place, while the content veers from childish remarks to unexplained jargon. Frank Versraete is a highly regarded physicist and knows what he’s talking about - but unfortunately, physics professors are not always the best people to explain physics to a general audience and, possibly contributed to by this being a translation, I thought this book simply doesn’t work. A small issue is that there are few historical inaccuracies, but that’s often the case when scientists write history of science, and that’s not the main part of the book so I would have overlooked it. As an example, we are told that Newton's apple story originated with Voltaire. Yet Newton himself mentioned the apple story to William Stukeley in 1726. He may have made it up - but he certainly originated it, not Voltaire. We are also told that ‘Galileo discovered the counterintuitive law behind a swinging o...

The Antigravity Enigma - Andrew May ****

Antigravity - the ability to overcome the pull of gravity - has been a fantasy for thousands of years and subject to more scientific (if impractical) fictional representation since H. G. Wells came up with cavorite in The First Men in the Moon . But is it plausible scientifically?  Andrew May does a good job of pulling together three ways of looking at our love affair with antigravity (and the related concept of cancelling inertia) - in science fiction, in physics and in pseudoscience and crankery. As May points out, science fiction is an important starting point as the concept was deployed there well before we had a good enough understanding of gravity to make any sensible scientific stabs at the idea (even though, for instance, Michael Faraday did unsuccessfully experiment with a possible interaction between gravity and electromagnetism). We then get onto the science itself, noting the potential impact on any ideas of antigravity that come from the move from a Newtonian view of a...