Skip to main content

Applied Mathematics - a very short introduction - Alain Goriely ***

This little book in Oxford University Press's vast, ever-expanding 'A Very Short Introduction' series starts off with a very positive note. After a quote from Groucho Marx, Alain Goriely takes us on a jovial tour of what 'applied mathematics' means. I was slightly surprised it needed such an introduction. It seems fairly obvious that it's mathematics that is, erm, applied, rather than maths for maths' sake. However, in the process Goriely gives us some of the basics involved. 

One thing I would have liked to have seen, but didn't get, was more of an exploration of the boundary between applied maths and theoretical physics. (Cambridge even has a 'Department of Applied Mathematics and Theoretical Physics'.) I appreciate that some applied mathematics is used in other disciplines, but it does seem that the bulk of it is in physics, and the distinction between what an applied mathematician and a theoretical physicist does seems fairly fuzzy, to say the least.

After the introduction, Goriely starts with simple applications, such as working out the cooking time for a turkey, through more and more complex uses, gradually adding in more powerful mathematics. Although you don't need to know how to use the heavier duty tools, you will meet differential equations and even partial differential equations along the way. The trouble with familiar applications, of course, is that it's easy to get lost in the reality of it, which left me worrying for Goriely's health. He reckons a 5 kg turkey cooks in 2.5 hours, where Delia Smith (who surely knows better) would give it at least 4 hours. I'm with Delia on this.

There's some really good material here on the use of dimensions and scaling, but already the way the information is presented is becoming quite difficult to absorb. Not surprisingly there are equations - but they are used far too liberally, while technical terms are introduced often without explanation, or with explanations that don't really work. We move on to mathematical modelling and solving equations. Once again, simply following the argument is difficult without already having a reasonable grasp of at least A-level maths.

There are all sorts of good things covered in the book, from knot theory (and its relevance to DNA) to JPEG compression. It's just a shame that, either because the book is so short, or because the author expects too much of the reader, the information in it is not presented in a way that is particularly accessible.

Paperback:  

Kindle:  
Using these links earns us commission at no cost to you


Review by Brian Clegg

Comments

Popular posts from this blog

The Antigravity Enigma - Andrew May ****

Antigravity - the ability to overcome the pull of gravity - has been a fantasy for thousands of years and subject to more scientific (if impractical) fictional representation since H. G. Wells came up with cavorite in The First Men in the Moon . But is it plausible scientifically?  Andrew May does a good job of pulling together three ways of looking at our love affair with antigravity (and the related concept of cancelling inertia) - in science fiction, in physics and in pseudoscience and crankery. As May points out, science fiction is an important starting point as the concept was deployed there well before we had a good enough understanding of gravity to make any sensible scientific stabs at the idea (even though, for instance, Michael Faraday did unsuccessfully experiment with a possible interaction between gravity and electromagnetism). We then get onto the science itself, noting the potential impact on any ideas of antigravity that come from the move from a Newtonian view of a...

The World as We Know It - Peter Dear ***

History professor Peter Dear gives us a detailed and reasoned coverage of the development of science as a concept from its origins as natural philosophy, covering the years from the eighteenth to the twentieth century. inclusive If that sounds a little dry, frankly, it is. But if you don't mind a very academic approach, it is certainly interesting. Obviously a major theme running through is the move from largely gentleman natural philosophers (with both implications of that word 'gentleman') to professional academic scientists. What started with clubs for relatively well off men with an interest, when universities did not stray far beyond what was included in mathematics (astronomy, for instance), would become a very different beast. The main scientific subjects that Dear covers are physics and biology - we get, for instance, a lot on the gradual move away from a purely mechanical views of physics - the reason Newton's 'action at a distance' gravity caused such ...

It's On You - Nick Chater and George Loewenstein *****

Going on the cover you might think this was a political polemic - and admittedly there's an element of that - but the reason it's so good is quite different. It shows how behavioural economics and social psychology have led us astray by putting the focus way too much on individuals. A particular target is the concept of nudges which (as described in Brainjacking ) have been hugely over-rated. But overall the key problem ties to another psychological concept: framing. Huge kudos to both Nick Chater and George Loewenstein - a behavioural scientist and an economics and psychology professor - for having the guts to take on the flaws in their own earlier work and that of colleagues, because they make clear just how limited and potentially dangerous is the belief that individuals changing their behaviour can solve large-scale problems. The main thesis of the book is that there are two ways to approach the major problems we face - an 'i-frame' where we focus on the individual ...