Skip to main content

The Museum of Second Chances (SF) - A E Warren ***

The premise of The Museum of Second Chances is very intriguing. In a future with a much-shrunk population, where Homo sapiens are second class citizens to more advanced humans, a museum recreates Neanderthals. The central character, Elise, a Homo sapiens, is recruited to be a companion to a Neanderthal, taking Elise from a squalid existence outside into the hi tech museum.

The development of the Neanderthals and the fate of the downtrodden Homo sapiens individuals is well done, with an engaging storyline that's solidly written. It's not uncommon for a first time novel that is self-published or very small press to sag in the middle, or simply lack writing skill, but the book was enjoyable and made it easy to identify with the main character.

I was a little worried by some of the science. I know science in science fiction should never get in the way of story, but this wasn't done to develop the storyline. So, for example, we are told that humans evolved from chimpanzees, a big no-no. And the author seems to think that the 'sapiens' in 'Homo sapiens' is plural. 

Most of those problems are got out of the way early on, though, and the book was heading for a four star review until I hit the ending. This seemed rushed. It didn't ruin the book, I'm still glad I read it, but it did feel as if there ought to have been some more to round it off.

Overall, though, a well-told story, incorporating some particularly interesting ideas.

Paperback:  

Kindle:  
Using these links earns us commission at no cost to you


Review by Brian Clegg

Comments

Popular posts from this blog

Models of the Mind - Grace Lindsay *****

This is a remarkable book. When Ernest Rutherford made his infamous remark about science being either physics or stamp collecting, it was, of course, an exaggeration. Yet it was based on a point - biology in particular was primarily about collecting information on what happened rather than explaining at a fundamental level why it happened. This book shows how biologists, in collaboration with physicists, mathematicians and computer scientists, have moved on the science of the brain to model some of its underlying mechanisms. Grace Lindsay is careful to emphasise the very real difference between physical and biological problems. Most systems studied by physics are a lot simpler than biological systems, making it easier to make effective mathematical and computational models. But despite this, huge progress has been made drawing on tools and techniques developed for physics and computing to get a better picture of the mechanisms of the brain. In the book we see this from two directions

The Ten Equations that Rule the World - David Sumpter ****

David Sumpter makes it clear in this book that a couple of handfuls of equations have a huge influence on our everyday lives. I needed an equation too to give this book a star rating - I’ve never had one where there was such a divergence of feeling about it. I wanted to give it five stars for the exposition of the power and importance of these equations and just two stars for an aspect of the way that Sumpter did it. The fact that the outcome of applying my star balancing equation was four stars emphasises how good the content is. What we have here is ten key equations from applied mathematics. (Strictly, nine, as the tenth isn’t really an equation, it’s the programmer’s favourite ‘If… then…’ - though as a programmer I was always more an ‘If… then… else…’ fan.) Those equations range from the magnificent one behind Bayesian statistics and the predictive power of logistic regression to the method of determining confidence intervals and the kind of influencer matrix so beloved of social m

How to Read Numbers - Tom Chivers and David Chivers *****

This is one of my favourite kinds of book - it takes on the way statistics are presented to us, points out flaws and pitfalls, and gives clear guidance on how to do it better. The Chivers brothers' book isn't particularly new in doing this - for example, Michael Blastland and Andrew Dilnot did something similar in the excellent 2007 title The Tiger that Isn't - but it's good to have an up-to-date take on the subject, and How to Read Numbers gives us both some excellent new examples and highlights errors that are more common now. The relatively slim title (and that's a good thing) takes the reader through a whole host of things that can go wrong. So, for example, they explore the dangers of anecdotal evidence, tell of study samples that are too small or badly selected, explore the easily misunderstood meaning of 'statistical significance', consider confounders, effect size, absolute versus relative risk, rankings, cherry picking and more. This is all done i