Skip to main content

Kathryn Harkup - Four Way Interview

Kathryn Harkup is a chemist and author. Kathryn  completed  a doctorate on her favourite chemicals,  phosphines, and went  on to further postdoctoral research before realising that talking,  writing and demonstrating  science appealed a bit more than hours  slaving over a hot fume-hood. For  six years she ran the outreach in  engineering, computing, physics  and maths at the University of Surrey,  which involved writing talks on  science topics that would appeal to  bored teenagers (anything disgusting  or dangerous was usually the most  popular). Kathryn is now a freelance  science communicator delivering  talks and workshops on the quirky side  of science. Her new book is Making the Monster: the science behind Mary Shelley's Frankenstein.

Why science?

I know I'm biased but science really is the best. It is an incredibly powerful tool for trying to make sense of the universe around us. The more time I spend learning about science and reading about it, the more amazing it becomes. Writing books is a great excuse for reading books about brilliant science and scientists.

Reading about scientific discoveries from two hundred years ago made me realise not just how far we have come but just how brilliant previous experimenters were. The acheivements they made, with relatively simple equipment and no concept of things like energy or atoms, is staggering. 

Why this book?

Although the scientific aspects of Frankenstein only make up a small proportion of the whole novel, it's the bit that got me thinking. The book is credited as being the first science fiction novel and much science fiction has an unnerving scientific credibility to it. I wondered how close the science in Frankenstein came to the science, and scientific expectations, of the time it was written. I was also fascinated how a nineteen-year-old woman came up with such a concept. Mary Shelley had no formal education and was living in time when women were almost completely barred from participating in practical science (there were a few notable exceptions). I wanted to know just how well informed she was and where she could have got her inspiration from. 

What's next?

Now I am researching another book. There will be plenty more science, and it's still a macabre topic, but it's even further back in history than Frankenstein. This time I'm going to be looking into the science of all the different ways to die in Shakespeare's plays. It's going to be lots of gory fun.

Not only do I get to investigate new (to me)  areas of science but I get to find out a lot more about British history, a subject I gave up very early on in my school career. I love the crossover between science and other subjects, for me it makes it all the more interesting.

What's exciting you at the moment?

It's great to see so much in the news about Frankenstein and Mary Shelley. She was an extraordinary woman living at an extraordinary time. I'm looking forward to talking about her life and work while I promote the book. 

I am also relishing taking on a new challenge and immersing myself in researching the Plantagenets and the plague. I am loving watching Shakespeare's plays and calling it 'work'.

Comments

Popular posts from this blog

God: the Science, the Evidence - Michel-Yves Bolloré and Olivier Bonnassies ***

This is, to say the least, an oddity, but a fascinating one. A translation of a French bestseller, it aims to put forward an examination of the scientific evidence for the existence of a deity… and various other things, as this is a very oddly structured book (more on that in a moment). In The God Delusion , Richard Dawkins suggested that we should treat the existence of God as a scientific claim, which is exactly what the authors do reasonably well in the main part of the book. They argue that three pieces of scientific evidence in particular are supportive of the existence of a (generic) creator of the universe. These are that the universe had a beginning, the fine tuning of natural constants and the unlikeliness of life.  To support their evidence, Bolloré and Bonnassies give a reasonable introduction to thermodynamics and cosmology. They suggest that the expected heat death of the universe implies a beginning (for good thermodynamic reasons), and rightly give the impression tha...

Humble Pi - Matt Parker ****

Matt Parker had me thoroughly enjoying this collection of situations where maths and numbers go wrong in everyday life. I think the book's title is a little weak - 'Humble Pi' doesn't really convey what it's about, but that subtitle 'a comedy of maths errors' is far more informative. With his delightful conversational style, honed in his stand-up maths shows, it feels as if Parker is a friend down the pub, relating the story of some technical disaster driven by maths and computing, or regaling us with a numerical cock-up. These range from the spectacular - wobbling and collapsing bridges, for example - to the small but beautifully formed, such as Excel's rounding errors. Sometimes it's Parker's little asides that are particularly attractive. I loved his rant on why phone numbers aren't numbers at all (would it be meaningful for someone to ask you what half your phone number is?). We discover the trials and tribulations of getting cal...

Quantum 2.0 - Paul Davies ****

Unlike the general theory of relativity or cosmology, quantum physics is an aspect of physics that has had a huge impact on everyday lives, particularly through the deployment of electronics, but also, for example, where superconductivity has led to practical applications. But when Paul Davies is talking about version 2.0, he is specifically describing quantum information, where quantum particles and systems are used in information technology. This obviously includes quantum computers, but Davies also brings in, for example, the potential for quantum AI technology. Quantum computers have been discussed for decades - algorithms had already been written for them as early as the 1990s - but it's only now that they are starting to become usable devices, not at the personal level but in servers. In his usual approachable style, Davies gives us four chapters bringing us up to speed on quantum basics, but then brings in quantum computing. After this we don't get solid quantum informat...