Skip to main content

Nature’s Nanotech #3 – Hanging with the Gecko – Brian Clegg

The third in our Nature’s Nanotech series. 
If you’ve ever seen gecko walking up a wall, it’s an uncanny experience. Okay, it’s not a 40 kilo golden retriever, but we are still talking about an animal weighing around 70 grams that can suspend itself from a smooth wall as if it were a fly. For a gecko, even a surface like glass presents no problems. This is nature’s Spiderman.
It might be reasonable to assume that the gecko’s gravity defying feats were down to sucker cups on its feet, a bit like a lizard version of a squid, but the reality is much more interesting. Take a look at a gecko’s toes and you’ll see a series of horizontal pads called setae. Seen close up they look like collections of hairs, but in fact they are the confusingly named ‘processes’ – very thin extensions of the tissue of toe which branch out into vast numbers of nanometer scale bristles.
These tiny projections add up to a huge surface area that is in contact with the wall or other surface the gecko decides to encounter. And that’s the secret of their glue-free adhesion. Because the gecko’s setae are ideally structured to make the most of the van der Waals force. This is a quantum effect resulting from interaction between molecules in the gecko’s foot and the surface.
We are used to atoms being attracted to each other by the electromagnetic force between different charged particles. So, for example, water molecules are attracted to each other by the hydrogen bonding we saw producing spherical water droplets in the previous feature. The relative positive charge on one of the hydrogen atoms is attracted to the relative negative charge on an oxygen. But the van der Waals force is a result of additional attraction after the usual forces that bond atoms together in molecules and hydrogen bonding have been accounted for.
Because of the strange quantum motion of electrons around the outside of an atom, the charge at any point undergoes small fluctuations – van der Waals forces arise when these fluctuations pair up with opposite fluctuations in a nearby atom. The result is a tiny attraction between each of the nanoscale protrusions on the foot and the nearby surface, which add up over the whole of the foot to provide enough force to keep the gecko in place.
Remarkably, if every single protrusion on a typical gecko’s foot was simultaneously in contact with a surface it could keep a heavy human in place – up to around 133 kg. In fact the biggest problem a gecko has is not staying on a surface, but getting its foot off. To make this possible its toes are jointed unusually and it seems to secrete a lubricating fluid that makes it easier to detach its otherwise dry but sticky pads.
Not surprisingly, there is a lot of interest in making use of gecko-style technology. After all, master this approach and you have a form of adhesion that is extremely powerful, yet doesn’t deteriorate with repeated attaching and detaching like a conventional adhesive. A number of universities have been researching the subject.
The first publication seems to have been from the University of Akron in Ohio, where a paper in 2007 described a gecko technology sticky tape with four times the sticking power of a gecko’s foot, meaning fully deployed gecko-sized pads could hold up around half a tonne. With these on its feet, a 40 kilogram golden retriever would have no problem walking up walls – the only difficulty would be managing to apply enough force to detach its paws as it walked. In the tape, the gecko’s setae are replaced by nanotubes of carbon fibre which are attached to a sheet of flexible polymer, acting as the tape.
The great thing about carbon nanotubes, which are effectively long, thin, flexible carbon crystals, is that they can be significantly narrower than the smallest protrusions from a gecko’s foot. A typical nanotube has a diameter of a single nanometer – pure nanotechnology – maximising the opportunity for van der Waals attraction. Within a year, other researchers at the University of Dayton (Ohio again!) were announcing a glue with ten times the sticking power of the gecko’s foot.
Such adhesives are available commercially on a small scale, offering the ability to stick under extreme temperature conditions and to surfaces that are wet or flexible that would defeat practically any conventional adhesive. We can expect to see a lot more gecko tapes (like the Geckskin product) and gecko glues in the future.
There have been other theories to explain the mechanism of the gecko’s foot, including a form of capillary attraction, but the best evidence at the moment is in favour of van der Waals forces. This seems to be borne out by the problem geckos have sticking to Teflon – PTFE has very low van der Waals attractiveness. To find out more about the gecko’s foot (and other technological inspirations from nature) I would recommend the aptly titled The Gecko’s Foot by Peter Forbes.
The action that keeps a gecko in place is a dry application of natural nanotechnology, but the more you look at the nanotech biological world, the more you realize it’s mostly a wet world. In the next feature in this series we’ll look at why conventional ‘dry’ engineering often won’t work on nanoscales and how we need to take a different look at the way we build our technology, bringing liquids into the mix.


Popular posts from this blog

The Feed (SF) - Nick Clark Windo ****

Ever since The War of the Worlds, the post-apocalyptic disaster novel has been a firm fixture in the Science Fiction universe. What's more, such books are often among the few SF titles that are shown any interest by the literati, probably because many future disaster novels feature very little science. With a few exceptions, though (I'm thinking, for instance, The Chrysalids) they can make for pretty miserable reading unless you enjoy a diet of page after page of literary agonising.

The Feed is a real mixture. Large chunks of it are exactly that - page after page of self-examining misery with an occasional bit of action thrown in. But, there are parts where the writing really comes alive and shows its quality. This happens when we get the references back to pre-disaster, when we discover the Feed, which takes The Circle's premise to a whole new level with a mega-connected society where all human interaction is through directly-wired connections… until the whole thing fails …

The Bastard Legion (SF) - Gavin Smith *****

Science fiction has a long tradition of 'military in space' themes - and usually these books are uninspiring at best and verging on fascist at worst. From a serious SF viewpoint, it seemed that Joe Haldeman's magnificent The Forever War made the likes of Starship Troopers a mocked thing of the past, but sadly Hollywood seems to have rebooted the concept and we now see a lot of military SF on the shelves.

The bad news is that The Bastard Legion could not be classified as anything else - but the good news is that, just as Buffy the Vampire Slayer subverted the vampire genre, The Bastard Legion has so many twists on a straightforward 'marines in space' title that it does a brilliant job of subversion too.

The basic scenario is instantly different. Miska is heading up a mercenary legion, except they're all hardened criminals on a stolen prison ship, taking part because she has stolen the ship and fitted them all with explosive collars. Oh, and helping her train her &…

Euler's Pioneering Equation - Robin Wilson ***

The concept of a 'beautiful equation' is a mystery to many, but it seems to combine a piece of mathematics that expresses something sophisticated in relatively few terms and something that looks satisfying. The equation that has proved standout amongst mathematicians, as by far the most beautiful (and is only placed second to Maxwell's equation amongst physicists) is Euler's remarkable eiπ+1 = 0. What seems remarkable to me about this is that it just seems bizarre that this combination of things produces such a neat result. (Incidentally, as far as I can see, the only reason for the 'pioneering' in the title was to enable the fancy graphic on the cover of the book.)

Getting popular maths books right is incredibly difficult. When I started reading this book, I really thought that Robin Wilson had cracked it. After an introduction, he gives us a chapter on each of the elements of the equation (except the plus and equals signs), from the more basic aspects like 1 a…