Skip to main content

Romeel Davé - Five Way Interview

Romeel Davé holds the Chair of Physics at the University of Edinburgh.  Born in California, he got his bachelor’s from U.C. Berkeley, MSc from Caltech, and PhD from U.C. Santa Cruz in 1998.  He was a professor in Tucson and Cape Town before coming to Edinburgh in 2017.   He is a leading researcher in using supercomputer simulations to better understand the formation of galaxies, their co-evolution with surrounding gas, and the nature of dark matter and dark energy.  Simulating the Cosmos is his first popular science book.

Why science?

My favorite game growing up was Clue.  I’ve always enjoyed piecing together evidence to solve a mystery.  Science is basically just a big detective game -- the Universe leaves you a bunch of random clues, and you have to tease out the underlying perpetrator.  It’s good fun, and as a bonus it’s gratifying to be part of humanity’s never-ending quest to push the frontiers of knowledge.

Why this book?

Many people view science as grand proclamations from a cabal of eggheads in white coats. But as scientists our day-to-day work is almost the polar opposite - a semi-blind stumble through a maze of wrong turns and dead ends.  I wanted to show how simulators like myself spend their days reasoning through roadblocks, designing and running numerical experiments, learning new skills as unexpectedly needed, and fighting through the daily frustrations of failure.  I wanted to show that despite all this, we inch ever closer towards answering some of humanity’s deepest questions.  This book was my homage to this scientific journey, as told through the twisting story of the development of cosmological simulations. 

Do you think simulations tend to be viewed as the poor cousin of science?

When I started my career, that was definitely true.  Now the situation is very different.  Not just in astronomy, but in physics, biology, or just about any science you look, simulations are slowly replacing traditional theory as the preferred way to interpret experimental or observational data.  The recently-inaugurated Flatiron Institute in New York is an example of this, where the Simons Foundation has invested hundreds of millions in new centres in fields from computational neuroscience to computational quantum to computational astrophysics. Simulations are revolutionising the way we do science, and arguably nowhere is this more apparent than in galaxy formation and cosmology.

What’s next?

When I started my career 30 years ago, my pie-in-the-sky dream was to run a simulation including all the known physics of galaxy formation within a cosmological context, from dust grains and molecules forming deep within the interstellar medium of galaxies to the ultraviolet radiation emitted by black holes pervading the universe on large scales.  I genuinely believe that within the next five years or so, we will achieve this, albeit using sub-grid models.  My group’s planned next generation of simulations, called KIARA, has this soup to nuts works that I envisioned so long ago, and even a few things that I hadn’t anticipated.  Other groups are working on similar things. Although there would still be lots left to do, this would be major milestone in the field, and for myself a nice career capstone.

What’s exciting to you at the moment?

The obvious answer in astronomy is the James Webb Space Telescope, which has already been transformational in understanding the distant universe; I’m involved in several big JWST programs.  But a lesser-known revolution is afoot in the radio: South Africa’s new MeerKAT radio interferometer will likewise be transformation for enabling studies of distant galaxies in the under-explored radio bands.  MeerKAT is the core of the upcoming Square Kilometre Array project, an international coalition headquartered in Manchester aiming at building next-generation radio facilities around the world.  I am still very connected to South African astronomy from my time as a SARChI Chair there, and I am going back to South Africa in 2024 for my sabbatical to help better understand how to use MeerKAT’s novel data to constrain our simulations for galaxy formation and cosmology.  It is always exciting to be able to probe into a new regime; the Universe never fails to surprise!




Comments

Popular posts from this blog

Target Earth – Govert Schilling *****

I was biased in favour of this great little book even before I started to read it, simply because it’s so short. I’m sure that a lot of people who buy popular science books just want an overview and taster of a subject that’s brand new to them – and that’s likely to work best if the author keeps it short and to the point. Of course, you may want to dig deeper in areas that really interest you, but that’s what Google is for. That basic principle aside, I’m still in awe at how much substance Govert Schilling has managed to cram into this tiny book. It’s essentially about all the things (natural things, I mean, not UFOs or space junk) that can end up on Earth after coming down from outer space. That ranges from the microscopically small particles of cosmic dust that accumulate in our gutters, all the way up to the ten kilometre wide asteroid that wiped out the dinosaurs. Between these extremes are two topics that we’ve reviewed entire books about recently: meteorites ( The Meteorite Hunt...

The Decline and Fall of the Human Empire - Henry Gee ****

In his last book, Henry Gee impressed with his A (Very) Short History of Life on Earth - this time he zooms in on one very specific aspect of life on Earth - humans - and gives us not just a history, but a prediction of the future - our extinction. The book starts with an entertaining prologue, to an extent bemoaning our obsession with dinosaurs, a story that leads, inexorably towards extinction. This is a fate, Gee points out, that will occur for every species, including our own. We then cover three potential stages of the rise and fall of humanity (the book's title is purposely modelled on Gibbon) - Rise, Fall and Escape. Gee's speciality is palaeontology and in the first section he takes us back to explore as much as we can know from the extremely patchy fossil record of the origins of the human family, the genus Homo and the eventual dominance of Homo sapiens , pushing out any remaining members of other closely related species. As we move onto the Fall section, Gee gives ...

The New Lunar Society - David Mindell *****

David Mindell's take on learning lessons for the present from the eighteenth century Lunar Society could easily have been a dull academic tome, but instead it was a delight to read. Mindell splits the book into a series of short essay-like chapters which includes details of the characters involved in and impact of the Lunar Society, which effectively kick-started the Industrial Revolution, interwoven with an analysis of the decline of industry in modern twentieth and twenty-first century America, plus the potential for taking a Lunar Society approach to revitalise industry for the future. We see how a group of men (they were all men back then) based in the English Midlands (though with a strong Scottish contingent) brought together science, engineering and artisan skills in a way that made the Industrial Revolution and its (eventual) impact on improving the lot of the masses possible. Interlaced with this, Mindell shows us how 'industrial' has become something of a dirty wo...