Skip to main content

Suzie Sheehy - Five Way Interview

Dr Suzy Sheehy is a physicist, science communicator and academic who divides her time between research groups at the University of Oxford and University of Melbourne. She is currently focused on developing new particle accelerators for applications in medicine. The Matter of Everything is her first book.

Why physics?


For me, one of the reasons I love physics is because it allows us to go deep into awe-inspiring and almost philosophical aspects of nature, yet is also inherently practical. By understanding and doing research in physics we are always expanding the knowledge of our species, giving us new perspectives on our world and on our place in it. But I also think physics is amazing because this knowledge can be used to improve our lives in myriad ways, from electronics, to cultural heritage and of course in medicine.

Why this book?

If you’ve ever read about physics discoveries and wondered 'but how do we know that?' this book will finally help you understand. It tells the human stories and puts the reader in the shoes of experimental physicists as they go about their work of (not to be too grand about it) uncovering the nature of reality. It also takes the reader beyond this, zooming out to answer the 'so what?' questions as well, highlighting the ways we have used all this knowledge in surprisingly practical ways.

Why are theorists better known to the public than experimentalists?

I can see three main reasons for this. First up, many folks don’t realise there are different types of physicists at all and assume we are alike and perhaps a little like Einstein. Second, we are story-driven people and pop culture is all about narrative: yet it’s harder to build narratives around experimental scientists because there are more of them. Today experimentalists often work together in collaborations of hundreds or thousands where the lead person is elected as a spokesperson, and often shy away from highlighting individual characters. Finally, pragmatically, in my experience theorists tend to write (almost) all the books on physics because they aren’t constrained by the day to day demands of running a lab. They definitely have a more writing-friendly working style than the experimentalists.

What’s next?

In particle physics it feels like research is reaching a new era: compelling theories that go beyond the so-called ‘Standard Model’ don’t yet seem to be supported by the data from the Large Hadron Collider. They may get a (nice) surprise after collecting more data… or they may need to shift their thinking and take a more experiment-led approach, reappraising the ‘knowledge gaps’ with an open mind. In this realm, physicists will need to investigate further into things we have discovered but not fully understood, like Higgs bosons and neutrinos, but also try to do experiments to understand or find things like dark matter. Meanwhile, I remain hopeful that our theorist colleagues might come up with new – perhaps even revolutionary – ideas.

What’s exciting you at the moment?

I’m mostly excited that my new lab – called the X-LAB for compact particle accelerators – is getting up and running as I write this (yes… I should be in the lab helping, but I’m here writing this… see what I mean about theorists vs experimentalists!?). I’m very much looking forward to the potential our new lab holds for research and innovation. Fairly early in my research career I took a step back from the fundamental physics, instead choosing to work on accelerator technologies and their societal applications – particularly their potential to revolutionise cancer treatment. It’s important work that merges my love of both the philosophical and practical nature of physics.

Image © Alice Black 2022


Comments

Popular posts from this blog

Ctrl+Alt+Chaos - Joe Tidy ****

Anyone like me with a background in programming is likely to be fascinated (if horrified) by books that present stories of hacking and other destructive work mostly by young males, some of whom have remarkable abilities with code, but use it for unpleasant purposes. I remember reading Clifford Stoll's 1990 book The Cuckoo's Egg about the first ever network worm (the 1988 ARPANet worm, which accidentally did more damage than was intended) - the book is so engraved in my mind I could still remember who the author was decades later. This is very much in the same vein,  but brings the story into the true internet age. Joe Tidy gives us real insights into the often-teen hacking gangs, many with members from the US and UK, who have caused online chaos and real harm. These attacks seem to have mostly started as pranks, but have moved into financial extortion and attempts to destroy others' lives through doxing, swatting (sending false messages to the police resulting in a SWAT te...

Battle of the Big Bang - Niayesh Afshordi and Phil Harper *****

It's popular science Jim, but not as we know it. There have been plenty of popular science books about the big bang and the origins of the universe (including my own Before the Big Bang ) but this is unique. In part this is because it's bang up to date (so to speak), but more so because rather than present the theories in an approachable fashion, the book dives into the (sometimes extremely heated) disputed debates between theoreticians. It's still popular science as there's no maths, but it gives a real insight into the alternative viewpoints and depth of feeling. We begin with a rapid dash through the history of cosmological ideas, passing rapidly through the steady state/big bang debate (though not covering Hoyle's modified steady state that dealt with the 'early universe' issues), then slow down as we get into the various possibilities that would emerge once inflation arrived on the scene (including, of course, the theories that do away with inflation). ...

Why Nobody Understands Quantum Physics - Frank Verstraete and Céline Broeckaert **

It's with a heavy heart that I have to say that I could not get on with this book. The structure is all over the place, while the content veers from childish remarks to unexplained jargon. Frank Versraete is a highly regarded physicist and knows what he’s talking about - but unfortunately, physics professors are not always the best people to explain physics to a general audience and, possibly contributed to by this being a translation, I thought this book simply doesn’t work. A small issue is that there are few historical inaccuracies, but that’s often the case when scientists write history of science, and that’s not the main part of the book so I would have overlooked it. As an example, we are told that Newton's apple story originated with Voltaire. Yet Newton himself mentioned the apple story to William Stukeley in 1726. He may have made it up - but he certainly originated it, not Voltaire. We are also told that â€˜Galileo discovered the counterintuitive law behind a swinging o...