Skip to main content

The Cosmic Web - J. Richard Gott ****

This is a book about the large-scale structure of the universe. It’s a subject Richard Gott is particularly well qualified to talk about, having been associated with it since the 1970s. When he was still a graduate student he did pioneering work on the gravitational clumping of galaxies into galaxy clusters. Initially it was believed that this clumping tendency would repeat itself in an ever-ascending hierarchy, with stars clumping into galaxies, galaxies into clusters, clusters into superclusters and so on up to the very largest scales. In time, however, both observational and theoretical work led to a much more complex picture – the ‘cosmic web’ of the book’s title.

Topologically, the universe resembles a giant sea sponge. Unlike the hierarchical model, the high density concentrations of matter (corresponding to the body of the sponge) are not isolated clumps, but a single intricately connected structure. At the same time, the low density ‘voids’ running through it are likewise continuously connected – in contrast to the holes in a Swiss cheese, which was another early model that had to be discarded. Gott was among the first people to recognize the sponge-like structure of the universe – in part because, as a precocious high-school student back in the 1960s, he had done a science fair project on topological models of exactly that kind.

There’s no question that Gott is one of the world’s leading experts in this subject – but is he the best person to write a popular science book about it? I think the answer is a qualified ‘yes’. I really enjoyed his writing style, which is as lucid and unadorned as I’ve ever come across in an academic author. The theory never gets too difficult, either – mainly classical dynamics and statistics, with no relativistic or quantum complications. Nevertheless, Gott is not one of those writers who pretends you can have mathematics-free physics. There are no actual equations (except in the small print at the end of the book), but there are plenty of graphs, Greek letters and powers-of-ten numbers. This is not a book for people who are scared of such things.

At one point, Gott recounts an amusing anecdote he heard from the great Russian physicist Yakov Zeldovich, highlighting the benefits of using the median rather than the mean as a statistical measure. Yet he tells it to the reader exactly the way Zeldovich told it to him – without explaining how the mean and median are defined, or what they are used for. If those things are second nature to you, then you’ll appreciate the anecdote… and you’ll probably enjoy the whole book, too. If not, then you may find it heavy going.

This is the sort of book I would have loved when I was an undergraduate, or possibly even as a mind-stretching read in high school. It’s a young audience of future scientists who will probably get the most out of it today – not just for the picture it paints of how the universe is made, but for its unique inside view of four decades of cutting-edge research.


Review by Andrew May


Popular posts from this blog

The Art of Statistics - David Spiegelhalter *****

Statistics have a huge impact on us - we are bombarded with them in the news, they are essential to medical trials, fundamental science, some court cases and far more. Yet statistics is also a subject than many struggle to deal with (especially when the coupled subject of probability rears its head). Most of us just aren't equipped to understand what we're being told, or to question it when the statistics are dodgy. What David Spiegelhalter does here is provide a very thorough introductory grounding in statistics without making use of mathematical formulae*. And it's remarkable.

What will probably surprise some who have some training in statistics, particularly if (like mine) it's on the old side, is that probability doesn't come into the book until page 205. Spiegelhalter argues that as probability is the hardest aspect for us to get an intuitive feel for, this makes a lot of sense - and I think he's right. That doesn't mean that he doesn't cover all …

The Best of R. A. Lafferty (SF) – R. A. Lafferty ****

Throughout my high school years (1973–76) I carefully kept a list of all the science fiction I read. I’ve just dug it out, and it contains no fewer than 1,291 entries – almost all short stories I found in various SF magazines and multi-author anthologies. Right on the first page, the sixth item is ‘Thus We Frustrate Charlemagne’ by R. A. Lafferty, and his name appears another 32 times before the end of the list. This isn’t a peculiarity of my own tastes. Short stories were much more popular in those days than they are today, and any serious SF fan would have encountered Lafferty – a prolific writer of short fiction – in the same places I did.

But times change, and this Gollancz Masterworks volume has a quote from the Guardian on the back describing Lafferty as ‘the most important science fiction writer you’ve never heard of’. Hopefully this newly assembled collection will go some way to remedying that situation. It contains 22 short stories, mostly dating from the 1960s and 70s, each w…

David Beerling - Four Way Interview

David Beerling is the Sorby Professor of Natural Sciences, and Director of the Leverhulme Centre for Climate Change Mitigation at the University of Sheffield. His book The Emerald Planet (OUP, 2007) formed the basis of a major 3-part BBC TV series ‘How to Grow a Planet’. His latest title is Making Eden.

Why science?

I come from a non-academic background. None of my family, past or present, went to university, which may explain the following. In the final year of my degree in biological sciences at the University of Wales, Cardiff (around 1986), we all participated in a field course in mid-Wales, and I experienced an epiphany. I was undertaking a small research project on the population dynamics of bullheads (Cotus gobio), a common small freshwater fish, with a charismatic distinguished professor, and Fellow of the Royal Society in London. Under his guidance, I discovered the process of learning how nature works through the application of the scientific method. It was the most exciting t…