Skip to main content

The Cosmic Web - J. Richard Gott ****

This is a book about the large-scale structure of the universe. It’s a subject Richard Gott is particularly well qualified to talk about, having been associated with it since the 1970s. When he was still a graduate student he did pioneering work on the gravitational clumping of galaxies into galaxy clusters. Initially it was believed that this clumping tendency would repeat itself in an ever-ascending hierarchy, with stars clumping into galaxies, galaxies into clusters, clusters into superclusters and so on up to the very largest scales. In time, however, both observational and theoretical work led to a much more complex picture – the ‘cosmic web’ of the book’s title.

Topologically, the universe resembles a giant sea sponge. Unlike the hierarchical model, the high density concentrations of matter (corresponding to the body of the sponge) are not isolated clumps, but a single intricately connected structure. At the same time, the low density ‘voids’ running through it are likewise continuously connected – in contrast to the holes in a Swiss cheese, which was another early model that had to be discarded. Gott was among the first people to recognize the sponge-like structure of the universe – in part because, as a precocious high-school student back in the 1960s, he had done a science fair project on topological models of exactly that kind.

There’s no question that Gott is one of the world’s leading experts in this subject – but is he the best person to write a popular science book about it? I think the answer is a qualified ‘yes’. I really enjoyed his writing style, which is as lucid and unadorned as I’ve ever come across in an academic author. The theory never gets too difficult, either – mainly classical dynamics and statistics, with no relativistic or quantum complications. Nevertheless, Gott is not one of those writers who pretends you can have mathematics-free physics. There are no actual equations (except in the small print at the end of the book), but there are plenty of graphs, Greek letters and powers-of-ten numbers. This is not a book for people who are scared of such things.

At one point, Gott recounts an amusing anecdote he heard from the great Russian physicist Yakov Zeldovich, highlighting the benefits of using the median rather than the mean as a statistical measure. Yet he tells it to the reader exactly the way Zeldovich told it to him – without explaining how the mean and median are defined, or what they are used for. If those things are second nature to you, then you’ll appreciate the anecdote… and you’ll probably enjoy the whole book, too. If not, then you may find it heavy going.

This is the sort of book I would have loved when I was an undergraduate, or possibly even as a mind-stretching read in high school. It’s a young audience of future scientists who will probably get the most out of it today – not just for the picture it paints of how the universe is made, but for its unique inside view of four decades of cutting-edge research.


Hardback 

Kindle 
Using these links earns us commission at no cost to you
Review by Andrew May

Comments

Popular posts from this blog

Philip Ball - How Life Works Interview

Philip Ball is one of the most versatile science writers operating today, covering topics from colour and music to modern myths and the new biology. He is also a broadcaster, and was an editor at Nature for more than twenty years. He writes regularly in the scientific and popular media and has written many books on the interactions of the sciences, the arts, and wider culture, including Bright Earth: The Invention of Colour, The Music Instinct, and Curiosity: How Science Became Interested in Everything. His book Critical Mass won the 2005 Aventis Prize for Science Books. Ball is also a presenter of Science Stories, the BBC Radio 4 series on the history of science. He trained as a chemist at the University of Oxford and as a physicist at the University of Bristol. He is also the author of The Modern Myths. He lives in London. His latest title is How Life Works . Your book is about the ’new biology’ - how new is ’new’? Great question – because there might be some dispute about that! Many

Stephen Hawking: Genius at Work - Roger Highfield ****

It is easy to suspect that a biographical book from highly-illustrated publisher Dorling Kindersley would be mostly high level fluff, so I was pleasantly surprised at the depth Roger Highfield has worked into this large-format title. Yes, we get some of the ephemera so beloved of such books, such as a whole page dedicated to Hawking's coxing blazer - but there is plenty on Hawking's scientific life and particularly on his many scientific ideas. I've read a couple of biographies of Hawking, but I still came across aspects of his lesser fields here that I didn't remember, as well as the inevitable topics, ranging from Hawking radiation to his attempts to quell the out-of-control nature of the possible string theory universes. We also get plenty of coverage of what could be classified as Hawking the celebrity, whether it be a photograph with the Obamas in the White House, his appearances on Star Trek TNG and The Big Bang Theory or representations of him in the Simpsons. Ha

The Blind Spot - Adam Frank, Marcelo Gleiser and Evan Thompson ****

This is a curate's egg - sections are gripping, others rather dull. Overall the writing could be better... but the central message is fascinating and the book gets four stars despite everything because of this. That central message is that, as the subtitle says, science can't ignore human experience. This is not a cry for 'my truth'. The concept comes from scientists and philosophers of science. Instead it refers to the way that it is very easy to make a handful of mistakes about what we are doing with science, as a result of which most people (including many scientists) totally misunderstand the process and the implications. At the heart of this is confusing mathematical models with reality. It's all too easy when a mathematical model matches observation well to think of that model and its related concepts as factual. What the authors describe as 'the blind spot' is a combination of a number of such errors. These include what the authors call 'the bifur