Skip to main content

David Sumpter - Four Way Interview

David Sumpter is professor of applied mathematics at the University of Uppsala, Sweden. Originally from London, he completed his doctorate in Mathematics at Manchester, and held academic research positions at both Oxford and Cambridge before heading to Sweden.

An incomplete list of the applied maths research projects on which David has worked include pigeons flying in pairs over Oxford; the traffic of Cuban leaf-cutter ants; fish swimming between coral in the Great Barrier Reef; and dancing honey bees from Sydney. In his spare time, he exploits his mathematical expertise in training a successful under-nines football team, Uppsala IF 2005. David is a Liverpool supporter with a lifelong affection for Dunfermline Athletic. You can follow David on Twitter - @soccermatics David's 2016 book is Soccermatics: mathematical adventures in the beautiful game.

Why maths?

Mathematicians often answer this question by saying maths is everywhere. I agree that maths can be found in everything, but saying that maths is ‘everywhere' can make it sound like some sort of mysterious force. When writing this book, my aim was to show that maths likes to get dirty. Maths isn’t just something abstract, but it is a set of tools for working things out and gaining insights. I want to put maths to work. In Soccermatics I show that maths can be applied to all aspects of football, from the randomness of goals, to passing networks, shot statistics, crowd movements and betting. The book takes my own experience as a researcher and applying it to football to get new answers in to the game.

Why this book?

I really enjoy watching football, playing football and training kids to play football. So when I got a chance to write a book combining my hobby and the research I do, I was thrilled. What can be better than analysing football data and communicating about that research to fanatical football fans? Nothing. When I started my research, I found that there was so much maths in football. All the symmetries, the structure and the strategy. These can all be analysed using the tools I had previously used to model biology. The book is takes the latest research in maths, stats and data visualisation and showing how it can be used in football. 

That said, the book is not just football. I squeeze in slime moulds, hunting lionesses, fish schools, bird flocks, ants, clapping undergraduates, wise and not so wise crowds, and cancerous tumours. The point is that maths can be used to give us the edge in understanding all sorts of different parts of the world.

What’s next?

I’m certainly not finished with football. It is so much fun. Football has fed back in to my ‘serious’ scientific research. And I am hoping to find out lots more things about the game.

What’s exciting you at the moment?

After I finished writing the book, I started thinking about whether the research I have done could have an impact on football clubs. I began a Twitter account doing mathematical analysis of games. In February, I was invited to the OptaPro forum to talk about what I had found out. I presented work from one of the chapters of the book about how to create tactical maps. This was a really interesting experience, to talk to football analysts and see how they saw mathematics contribution to their sport. The analysts were very open to new ideas and I hope to work more closely with football teams in the future. I am not signed by any club yet, but if a Premier League side would like to offer me a 3-year contract, I could be tempted…

Comments

Popular posts from this blog

Ancestral Night (SF) - Elizabeth Bear *****

Only a couple of weeks ago, reviewing a 1960s SF book, I bemoaned the fact that science fiction novels of ideas are less common now. Although it is correctly labelled a space opera, Ancestral Night delivers ideas with aplomb.

Let's deal with the space opera aspect first. Elizabeth Bear provides some excellent adventure scenes in space, and we've the usual mix of huge spaceships and interesting aliens. Main character Haimey Dz is an engineer on a ship that salvages wrecks - but, as we gradually discover - she also has a forgotten past. A major feature of the storyline (one that seems to link to the medieval idea of the lost wisdom of the past) is ancient technology from a long-dead race with capabilities, notably manipulating spacetime mentally (Bear has yet to point out that the travel technologies used here could manipulate time as well as space), which fit well with Arthur C. Clarke's magic definition.

I particularly liked the (surely intentional) nods to the much-misse…

The Creativity Code - Marcus du Sautoy *****

At first glance this might just be another 'What AI is good at and not so good at' title. And in a way, it is. But, wow, what a brilliant book! Marcus du Sautoy takes us on a tour of what artificial intelligence has achieved (and possibly can in the future achieve) in a range of fields from his own of mathematics, through game playing, music, art and more.

After a little discussion of what creativity is, we start off with the now very familiar story of DeepMind's AlphaGo and its astonishing ability to take on the hugely challenging game of Go. Even though I've read about this many times before, du Sautoy, as a Go player and mathematician, gives a real feel for why this was such a triumph - and so shocking. Not surprisingly he is also wonderful on what mathematicians actually do, how computers have helped them to date and how they have the potential to do far more in the future. After all, mathematics is by far the closest science to game playing, as it has strict rule…

The Demon in the Machine - Paul Davies *****

Physicists have a habit of dabbling in biology and, perhaps surprisingly, biologists tend to be quite tolerant of it. (I find it hard to believe the reverse would be true if biologists tried to do physics.) Perhaps one reason for that tolerance is Schrödinger’s lecture series and book What is Life?, which had a huge impact on molecular biology and with a reference to which, not surprisingly, Paul Davies begins his fascinating book. 

At the heart of the The Demon in the Machine (we'll come back to that demon in a moment) is the relationship between life and information. In essence, Davies points out that if we try to reduce life to its simple physical components it is like trying to work with a computer that has no software. The equivalent of software here is information, not just in the best publicised aspect of the information stored in the DNA, but on a far broader scale, operating in networks across the organism.
This information and its processing gives life its emergent compl…