Skip to main content

Peter Atkins - Four Way Interview

Peter Atkins is a fellow of Lincoln College, University of Oxford and the author of about 70 books for students and a general audience. His texts are market leaders around the globe. A frequent lecturer in the United States and throughout the world, he has held visiting professorships in France, Israel, Japan, China, and New Zealand. His latest title is Conjuring the Universe.

Why science?

Science is the only reliable way of acquiring knowledge, especially when it is supported by the austere language of mathematics. Science depends on publicly shareable knowledge, and is gradually building an interconnected reticulation of concepts and theories, which show how the very large illuminates the very small, and vice versa, and how aspects from different disciplines augment each other rather than conflict.

Why this book?

It deals with a question that lurks inside everyone and, in my view, provides a framework for understanding. Deep questions often have simple answers: I wanted to share that attitude.

As science progresses, so it is becoming prepared to tackle the great questions that have puzzled philosophers and the general public: what is the origin of the laws of nature? Were the laws imposed on the universe at its creation, could they be different? I like to think of science as being on the track of simplicity, avoiding the intellectual feather bed of postulating external clause, which is in fact even greater complexity than what it purports to explain. So, I set out to explore whether the laws of nature have an extraordinarily simple origin, which I believe is a combination of indolence, anarchy, and ignorance. These principles turn out to be extraordinarily powerful, for I argue that they imply the conservation laws (especially the all-important conservation of energy, the basis of causality), the foundation of quantum mechanics (and by extension, all classical mechanics), the laws of electromagnetism, and all thermodynamics. 

What more is there? Well, there are two other major questions. One is why the fundamental constants have their special values. That I answer by dividing the constants into two classes, the structural constants (like the speed of light and Planck’s constant) and the coupling constants (like the fundamental charge). The values of the former are easy to explain; on the latter I have nothing to say. The other deep question is why mathematics works as a reliable language for describing Nature: here I hazard a guess or two.  Overall, in this equation-free account (the supporting equations are in the safe space of the Notes), I seek to answer what puzzle many and what should interest everyone.

What’s next?

I am gradually forming a view, but it is too early to share.

What’s exciting you at the moment?

The ceaseless, but sometimes slow, advance of understanding that science provides. Every day, wonder becomes more reliable.

Photo credit: Aria Photography, Oxford

Comments

Popular posts from this blog

Where are the chemistry popular science books?

by Brian Clegg
There has never been more emphasis on the importance of public engagement. We need both to encourage a deeper interest in science and to counter anti-scientific views that seem to go hand-in-hand with some types of politics. Getting the public interested in science both helps recruit new scientists of the future and spreads an understanding of why an area of scientific research deserves funding. Yet it is possible that chemistry lags behind the other sciences in outreach. As a science writer, and editor of this website, I believe that chemistry is under-represented in popular science. I'd like to establish if this is the case, if so why it is happening - and what can be done to change things. 


An easy straw poll is provided by the topic tags on the site. At the time of writing, there are 22 books under 'chemistry' as opposed to 97 maths, 126 biology and 182 physics. The distribution is inevitably influenced by editorial bias - but as the editor, I can confirm …

Make, Think, Imagine - John Browne ***

When you read a politician's memoirs you know that, nine times out of ten, it won't really quite work, because the message can't carry a whole book. It's reminiscent of the old literary agent's cry of 'Is it a book, or is it an article?' It's not that there aren't a lot of words in such tomes. It's almost obligatory for these books to be quite chunky. But it's a fair amount of work getting through them, and you don't feel entirely satisfied afterwards. Unfortunately, that's rather how John Browne (former head of oil giant BP)'s book comes across.

It's not that the central thread is unimportant. It used to be the case, certainly in the UK, that science, with its roots in philosophy and the pursuit of knowledge, was considered far loftier than engineering, growing out of mechanical work and the pursuit of profit. There is, perhaps, still a whiff of this around in some circles - so Browne's message that engineering has been…

Bloom - Ruth Kassinger ***

There is much fascinating material in this chunky book by Ruth Kassinger. It may be my total ignorance of biology and everyone else knows these things, but I learnt so much - for example that seaweed is algae and not a plant, about algae's role in the development of land plants, about the algae in lichen and its contribution to coral reefs.

The book is divided into four broad sections: on the origins and development of algae, on algae (and particularly seaweed) as food, on making use of algae, for example, for biofuel, and on algae and climate change, particularly the bleaching of coral and algal blooms. This is all done in a very approachable writing style, mixing descriptive material that is never over-technical with narrative often featuring visits to different locations and to talk to a range of experts from those who study to algae to those who cook them.

There are two problems though. Firstly, the book is too long at 380 pages. Each section could do with a trim, but this wa…