Skip to main content

Feature - Don't put your money in perpetual motion, Mrs Worthington

Apparent perpetual motion machine on the cover
of a 1920 issue of Popular Science magazine
(image from Wikipedia)
Physicists dismiss perpetual motion machines and 'free energy' devices out of hand. Some consider this a lack of open-mindedness, but in reality it's just that the physicists understand the second law of thermodynamics.

The second law is often stated as 'in a closed system, heat moves from a hot to a cold body' (there's another definition using entropy, we'll come onto in a moment). That's the basis at some point in the chain of every way we source energy, from a clean, green wind turbine to a dirty diesel. And, for that matter, it applies to the way your body uses energy too. Such is the respect for the second law that one of the UK's top astrophysicists of the first half of the twentieth century, Arthur Eddington, wrote:

If someone points out to you that your pet theory of the universe is in disagreement with Maxwell’s equations [James Clerk’s masterpiece that describe how electromagnetism works] – then so much the worse for Maxwell’s equations. If it is found to be contradicted by observation – well these experimentalists do bungle things sometimes. But if your theory is found to be against the second law of thermodynamics I can give you no hope; there is nothing for it but to collapse in the deepest humiliation.

So there has been some excitement in the press since a paper from last November pointed out a circumstance where the second law appears to be broken. (It ought to be pointed out that the paper appears on the pre-print server arXiv, so has not been peer reviewed. I'm not saying there's anything wrong with it, just needs noting.)

Of itself, there's nothing odd about heat moving from a colder to a hotter body. It's what a fridge does, after all. But this can only happen if energy is supplied to make it happen - this is what the 'closed system' bit of the definition precludes. What was interesting in the  described experiment is that heat was transferred spontaneously from 'colder' to 'hotter'. (I'll come back to those inverted commas soon), which is what you need for perpetual motion and free energy.

What physicist Roberto Serra of the Federal University of ABC in Santo AndrĂ©, Brazil and the University of York, with his colleagues, did was to get molecules of chloroform - a simple organic compound where a carbon atom has one hydrogen and three chlorine atoms attached - into a special state. The hydrogen atom and the carbon atom in a molecule had one of their properties - spin - correlated, giving them a kind of linkage. The hydrogen atom was in a higher energy state than the carbon, making the hydrogen technically hotter. And without outside help, as the correlation decayed, heat was transferred from the carbon to the hydrogen. From colder to hotter.

To understand why this happened requires the alternative definition of the second law involving entropy. Entropy is a measure of the disorder in a system. The more entropy, the more disorder. And the second law can be stated as the entropy in a closed system will either stay the same or increase. If the entropy decreases it's like heat going from cold to hot.

Entropy is measured by the number of different ways the components of a system can be organised. So, for example, a book has much lower entropy than a version with all the words in a random scrambled form. There are far more ways to arrange the words randomly than to form the specific book. (Imagine dropping the words randomly on a page - they are far more likely not to be in the order in the book.) This is why the second law also says it's more likely to break something than to unbreak it.

In the case of the chloroform experiment, entropy decreases because there are more ways to arrange the quantum states when they are correlated than when the correlation goes away - it's a bit like there being more ways to throw a six with two dice together than with two dice individually.

But free energy enthusiasts don't need to get too excited. Although there does appear to have been a spontaneous reduction in entropy, getting the molecules into the right state to start with would have taken far more energy than could be extracted. It's not a free source of energy.

The moral still is - don't buy a perpetual motion machine.



Comments

  1. I'm puzzled. If the transition from correlated to uncorrelated occurs spontaneously, does it release energy? If so, that energy will warm the environment and increase its temperature. If not, why does it happen?

    I remain confident that any claim to have demonstrated a spontaneous decrease in the total entropy of the universe will be refuted on closer analysis.

    ReplyDelete
    Replies
    1. As I mention at the end, there's inevitably lots of energy required to get things into the right state, so the universe is just fine.

      Delete

Post a Comment

Popular posts from this blog

The AI Delusion - Gary Smith *****

This is a very important little book ('little' isn't derogatory - it's just quite short and in a small format) - it gets to the heart of the problem with applying artificial intelligence techniques to large amounts of data and thinking that somehow this will result in wisdom.

Gary Smith as an economics professor who teaches statistics, understands numbers and, despite being a self-confessed computer addict, is well aware of the limitations of computer algorithms and big data. What he makes clear here is that we forget at our peril that computers do not understand the data that they process, and as a result are very susceptible to GIGO - garbage in, garbage out. Yet we are increasingly dependent on computer-made decisions coming out of black box algorithms which mine vast quantities of data to find correlations and use these to make predictions. What's wrong with this? We don't know how the algorithms are making their predictions - and the algorithms don't kn…

Infinity in the Palm of your Hand - Marcus Chown *****

A new Marcus Chown book is always a treat - and this is like a box of chocolates: a collection of bite-sized delights as Chown presents us with 50 science facts that are strange and wonderful.

The title is a quote from William Blake's Auguries of Innocence: 'To see a World in a Grain of Sand, / And a Heaven in a Wild Flower, / Hold Infinity in the palm of your hand, / And Eternity in an hour.' It would seem particularly appropriate if this book were read on a mobile phone (so it would be literally in the palm), which could well be true for ebook users, as the short essays make excellent reading for a commute, or at bedtime. I found them distinctly moreish - making it difficult to put the book down as I read just one more. And perhaps another. Oh, and that next one looks really interesting...

Each of the 50 pieces has a title and a short introductory heading, which mostly give a feel for the topic. The very first of these, however, briefly baffled me: 'You are a third mus…

How to Invent Everything - Ryan North ****

Occasionally you read a book and think 'I wish I'd thought of that.' This was my immediate reaction to Ryan North's How to Invent Everything. The central conceit manages to be both funny and inspiring as a framework for writing an 'everything you ever wanted to know about everything (and particularly science)' book.

What How to Invent Everything claims to be is a manual for users of a time machine (from some point in the future). Specifically it's a manual for dealing with the situation of the time machine going wrong and stranding the user in the past. At first it appears that it's going to tell you how to fix the broken time machine - but then admits this is impossible. Since you're stuck in the past, you might as well make the best of your surroundings, so the aim of the rest of the book is to give you the knowledge you need to build your own civilisation from scratch.

We start with a fun flow chart for working out just how far back in time you are…