Skip to main content

Feature - Don't put your money in perpetual motion, Mrs Worthington

Apparent perpetual motion machine on the cover
of a 1920 issue of Popular Science magazine
(image from Wikipedia)
Physicists dismiss perpetual motion machines and 'free energy' devices out of hand. Some consider this a lack of open-mindedness, but in reality it's just that the physicists understand the second law of thermodynamics.

The second law is often stated as 'in a closed system, heat moves from a hot to a cold body' (there's another definition using entropy, we'll come onto in a moment). That's the basis at some point in the chain of every way we source energy, from a clean, green wind turbine to a dirty diesel. And, for that matter, it applies to the way your body uses energy too. Such is the respect for the second law that one of the UK's top astrophysicists of the first half of the twentieth century, Arthur Eddington, wrote:

If someone points out to you that your pet theory of the universe is in disagreement with Maxwell’s equations [James Clerk’s masterpiece that describe how electromagnetism works] – then so much the worse for Maxwell’s equations. If it is found to be contradicted by observation – well these experimentalists do bungle things sometimes. But if your theory is found to be against the second law of thermodynamics I can give you no hope; there is nothing for it but to collapse in the deepest humiliation.

So there has been some excitement in the press since a paper from last November pointed out a circumstance where the second law appears to be broken. (It ought to be pointed out that the paper appears on the pre-print server arXiv, so has not been peer reviewed. I'm not saying there's anything wrong with it, just needs noting.)

Of itself, there's nothing odd about heat moving from a colder to a hotter body. It's what a fridge does, after all. But this can only happen if energy is supplied to make it happen - this is what the 'closed system' bit of the definition precludes. What was interesting in the  described experiment is that heat was transferred spontaneously from 'colder' to 'hotter'. (I'll come back to those inverted commas soon), which is what you need for perpetual motion and free energy.

What physicist Roberto Serra of the Federal University of ABC in Santo André, Brazil and the University of York, with his colleagues, did was to get molecules of chloroform - a simple organic compound where a carbon atom has one hydrogen and three chlorine atoms attached - into a special state. The hydrogen atom and the carbon atom in a molecule had one of their properties - spin - correlated, giving them a kind of linkage. The hydrogen atom was in a higher energy state than the carbon, making the hydrogen technically hotter. And without outside help, as the correlation decayed, heat was transferred from the carbon to the hydrogen. From colder to hotter.

To understand why this happened requires the alternative definition of the second law involving entropy. Entropy is a measure of the disorder in a system. The more entropy, the more disorder. And the second law can be stated as the entropy in a closed system will either stay the same or increase. If the entropy decreases it's like heat going from cold to hot.

Entropy is measured by the number of different ways the components of a system can be organised. So, for example, a book has much lower entropy than a version with all the words in a random scrambled form. There are far more ways to arrange the words randomly than to form the specific book. (Imagine dropping the words randomly on a page - they are far more likely not to be in the order in the book.) This is why the second law also says it's more likely to break something than to unbreak it.

In the case of the chloroform experiment, entropy decreases because there are more ways to arrange the quantum states when they are correlated than when the correlation goes away - it's a bit like there being more ways to throw a six with two dice together than with two dice individually.

But free energy enthusiasts don't need to get too excited. Although there does appear to have been a spontaneous reduction in entropy, getting the molecules into the right state to start with would have taken far more energy than could be extracted. It's not a free source of energy.

The moral still is - don't buy a perpetual motion machine.



Comments

  1. I'm puzzled. If the transition from correlated to uncorrelated occurs spontaneously, does it release energy? If so, that energy will warm the environment and increase its temperature. If not, why does it happen?

    I remain confident that any claim to have demonstrated a spontaneous decrease in the total entropy of the universe will be refuted on closer analysis.

    ReplyDelete
    Replies
    1. As I mention at the end, there's inevitably lots of energy required to get things into the right state, so the universe is just fine.

      Delete

Post a Comment

Popular posts from this blog

The Great Silence – Milan Cirkovic ****

The great 20th century physicist Enrico Fermi didn’t say a lot about extraterrestrial life, but his one utterance on the subject has gone down in legend. He said ‘Where is everybody?’ Given the enormous size and age of the universe, and the basic Copernican principle that there’s nothing special about planet Earth, space should be teeming with aliens. Yet we see no evidence of them. That, in a nutshell, is Fermi’s paradox.

Not everyone agrees that Fermi’s paradox is a paradox. To some people, it’s far from obvious that ‘space should be teeming with aliens’, while UFO believers would scoff at the suggestion that ‘we see no evidence of them’. Even people who accept that both statements are true – including  a lot of professional scientists – don’t always lose sleep over Fermi’s paradox. That’s something that makes Milan Cirkovic see red, because he takes it very seriously indeed. In his own words, ‘it is the most complex multidisciplinary problem in contemporary science’.

He points out th…

The Happy Brain - Dean Burnett ****

This book was sitting on my desk for some time, and every time I saw it, I read the title as 'The Happy Brian'. The pleasure this gave me was one aspect of the science of happiness that Dean Burnett does not cover in this engaging book.

Burnett's writing style is breezy and sometimes (particularly in footnotes) verging on the whimsical. His approach works best in the parts of the narrative where he is interviewing everyone from Charlotte Church to a stand-up comedian and various professors on aspects of happiness. We get to see the relevance of home and familiarity, other people, love (and sex), humour and more, always tying the observations back to the brain.

In a way, Burnett sets himself up to fail, pointing out fairly early on that everything is far too complex in the brain to really pin down the causes of something as diffuse as happiness. He starts off with the idea of cheekily trying to get time on an MRI scanner to study what his own brain does when he's happy, b…

Bodyology - Mosaic Science ****

It's a good sign when you pick up a book intending to read one chapter and end up reading three. It's very moreish. This is because it's made up of short, self-contained articles, originally published on a website. Often an edited collection of articles by different authors suggests a boring read, but here the articles are good pieces of journalism with plenty to interest the reader.

The topics are all vaguely human body related, but thankfully not all medical (not my favourite subject) - so, for example, as well as stories of a person cured of Lyme disease by bee stings or a piece on miscarriages we get topics like the effects on the body of being struck by lightning or falling from a high place. Even some more explicitly health-related matters, such as the impact of losing your sense of smell, were engaging enough to get me past my medical squeamishness.

The only reason I can't give the collection five stars is because of one aspect of the writing style that runs throu…