Skip to main content

The Order of Time - Carlo Rovelli ***

There's good news and bad news. The good news is that The Order of Time does what A Brief History of Time seemed to promise but didn't cover: it attempts to explore what time itself is. The bad news is that Carlo Rovelli does this in such a flowery and hand-waving fashion that, though the reader may get a brief feeling that they understand what he's writing about, any understanding rapidly disappears like the scent of a passing flower (the style is catching).

It doesn't help either that the book is in translation so some scientific terms are mangled, or that Rovelli has a habit of self-contradiction. Time and again (pun intended) he tells us time doesn't exist, then makes use of it. For example, at one point within a page of telling us of time's absence Rovelli writes of events that have duration and a 'when' - both meaningless terms without time. At one point he speaks of a world without time, elsewhere he says 'Time and space are real phenomena.' The difficulty I think Rovelli faces is that he uses the common physicist's approach of talking of a model as if it were reality. 

The wofflyness often gets in the way of understanding. For example, when talking about the second law of thermodynamics and entropy, he claims (I think - it's difficult to tell exactly what he is claiming) that the only reason we perceive the arrow of time from the increase of entropy is the way we label things. The implication is that, for example, the atoms in your body are no more ordered than the atoms in a scrambled mess - it's just that it's easier to see the order in your body because on the scale of atoms everything is blurred, but if we could see every atom exactly, whatever configuration they would be in would itself be unique. It sounds impressive, but skips over the way that fundamental quantum particles are indistinguishable. The arrangement of the cloud of atoms is only unique if you can tell one hydrogen atom (say) from another.

This is rather a shame, as Rovelli covers a considerable amount in what is a distinctly short book (though, thankfully, you get more for your money than in Seven Brief Lessons). Amongst other things, Rovelli passingly covers the special and general theories of relativity, thermodynamics and, of course, loop quantum gravity. And it's particularly frustrating because his attempt to put across the idea that it’s better to model reality in terms of events rather than things is a very powerful one which isn't often seen in popular science - but the message could easily be lost in the confusion. You come away with very little information - far more that rapidly disappearing odour.

I've no doubt this book should do well for those who are impressed that a physicist can refer to Proust. But I like a popular science book with significantly more meat in it, rather than vague impressions.

Hardback:  

Kindle:  
Using these links earns us commission at no cost to you


Review by Brian Clegg

Comments

  1. I read his earlier 7 Brief Lessons in Physics, and concluded that he creates the impression of explaining without the reality

    ReplyDelete

Post a Comment

Popular posts from this blog

David Spiegelhalter Five Way interview

Professor Sir David Spiegelhalter FRS OBE is Emeritus Professor of Statistics in the Centre for Mathematical Sciences at the University of Cambridge. He was previously Chair of the Winton Centre for Risk and Evidence Communication and has presented the BBC4 documentaries Tails you Win: the Science of Chance, the award-winning Climate Change by Numbers. His bestselling book, The Art of Statistics , was published in March 2019. He was knighted in 2014 for services to medical statistics, was President of the Royal Statistical Society (2017-2018), and became a Non-Executive Director of the UK Statistics Authority in 2020. His latest book is The Art of Uncertainty . Why probability? because I have been fascinated by the idea of probability, and what it might be, for over 50 years. Why is the ‘P’ word missing from the title? That's a good question.  Partly so as not to make it sound like a technical book, but also because I did not want to give the impression that it was yet another book

Vector - Robyn Arianrhod ****

This is a remarkable book for the right audience (more on that in a moment), but one that's hard to classify. It's part history of science/maths, part popular maths and even has a smidgen of textbook about it, as it has more full-on mathematical content that a typical title for the general public usually has. What Robyn Arianrhod does in painstaking detail is to record the development of the concept of vectors, vector calculus and their big cousin tensors. These are mathematical tools that would become crucial for physics, not to mention more recently, for example, in the more exotic aspects of computing. Let's get the audience thing out of the way. Early on in the book we get a sentence beginning ‘You likely first learned integral calculus by…’ The assumption is very much that the reader already knows the basics of maths at least to A-level (level to start an undergraduate degree in a 'hard' science or maths) and has no problem with practical use of calculus. Altho

Everything is Predictable - Tom Chivers *****

There's a stereotype of computer users: Mac users are creative and cool, while PC users are businesslike and unimaginative. Less well-known is that the world of statistics has an equivalent division. Bayesians are the Mac users of the stats world, where frequentists are the PC people. This book sets out to show why Bayesians are not just cool, but also mostly right. Tom Chivers does an excellent job of giving us some historical background, then dives into two key aspects of the use of statistics. These are in science, where the standard approach is frequentist and Bayes only creeps into a few specific applications, such as the accuracy of medical tests, and in decision theory where Bayes is dominant. If this all sounds very dry and unexciting, it's quite the reverse. I admit, I love probability and statistics, and I am something of a closet Bayesian*), but Chivers' light and entertaining style means that what could have been the mathematical equivalent of debating angels on