Skip to main content

Causal Inference - Paul Rosenbaum ***

The whole business of how we can use statistics to decide if something is caused by something else is crucially important to science, whether it's about the impact of a vaccine or deciding whether or not a spray of particles in the Large Hadron Collider has been caused by the decay of a Higgs boson. 'Correlation is not causality' is a mantra of science, because it's so easy to misinterpret a causal link from things that happen close together and space and time. As a result I was delighted with the idea of what the cover describes as a 'nontechnical guide to the basic ideas of modern causal inference'.

Paul Rosenbaum starts with a driving factor - deducing the effects of medical treatments - and goes on to bring in the significance of randomised experiments versus the problems of purely observational studies, digs into covariates and ways to bring in experiment-like features to observational studies, brings up issues of replication and finishes with the impact of uncertainty and complexity. This is mostly exactly the kind of topics than should be covered in such a guide, and as such it hits spot. But, unfortunately, while it is indeed an effective introductory guide for scientists who aren't mathematicians, Rosenbaum fails on making this accessible to a nontechnical audience.

Rosenbaum quotes mathematician George Pólya as saying that we need a notation that is 'unambiguous, pregnant, easy to remember…' I would have been happier with this book if Rosenbaum had explained how a mathematical notation could possibly be pregnant. (He doesn't.) But, more importantly, the notation used is simply not easy to remember for a nontechnical audience. Within one page of it starting to be used, I had to keep looking back to see what the different parts meant. 

We are told that a causal effect is 'a comparison of outcomes' and in the first example given this is rTw - rCw. Bits of this are relatively clear. T and C are treatment and control. W is George Washington (as the example is about his being treated, then dying soon after). I'm guessing 'r' refers to result, though that term isn't used in the text, but most importantly it's not obvious why the 'causal effect' is those two variables, set to arbitrary values, with one subtracted from the other. I'm pretty familiar with algebra and statistics, but I rapidly found the symbolic representations used hard to follow - there has to be a better way if you are writing for a general audience: it appears the author doesn't know how to do this. 

The irritating thing is that Rosenbaum doesn't then make use of this representation - he's lost half the readership for no reason. The rest of the book is more descriptive, but time after time the way that examples are described is handled in a way that is going to put people off, bringing in unnecessary jargon and simply writing more like a textbook without detail. Take the opening of the jauntily headed section 'Matching for Covariates as a Method of Adjustment': 'In figure 4 [which is several pages back in a different chapter], we saw more extensive peridontal disease amongst smokers, but we were not convinced that we were witnessing an effect caused by smoking. The figure compared the peridontal disease outcomes of treated individuals and controls who were not comparable. In figures 2-3 we saw that the smokers and nonsmokers were not comparable. The simplest solution is to compare individuals who are comparable, or at least comparable in ways we can see.' 

This is a classic example of the importance of being aware of who the audience is and what the book is supposed to do. To reach that target nontechnical audience, the book would have to have been far less of a textbook light, rethinking the way the material is put across. The content is fine for a technical audience who aren't mathematicians - so this is still a useful book - but the content certainly isn't well-presented for the general public.

Paperback:   
Kindle 
Using these links earns us commission at no cost to you
Review by Brian Clegg - See all Brian's online articles or subscribe to a weekly email free here

Comments

Popular posts from this blog

God: the Science, the Evidence - Michel-Yves Bolloré and Olivier Bonnassies ***

This is, to say the least, an oddity, but a fascinating one. A translation of a French bestseller, it aims to put forward an examination of the scientific evidence for the existence of a deity… and various other things, as this is a very oddly structured book (more on that in a moment). In The God Delusion , Richard Dawkins suggested that we should treat the existence of God as a scientific claim, which is exactly what the authors do reasonably well in the main part of the book. They argue that three pieces of scientific evidence in particular are supportive of the existence of a (generic) creator of the universe. These are that the universe had a beginning, the fine tuning of natural constants and the unlikeliness of life.  To support their evidence, Bolloré and Bonnassies give a reasonable introduction to thermodynamics and cosmology. They suggest that the expected heat death of the universe implies a beginning (for good thermodynamic reasons), and rightly give the impression tha...

Humble Pi - Matt Parker ****

Matt Parker had me thoroughly enjoying this collection of situations where maths and numbers go wrong in everyday life. I think the book's title is a little weak - 'Humble Pi' doesn't really convey what it's about, but that subtitle 'a comedy of maths errors' is far more informative. With his delightful conversational style, honed in his stand-up maths shows, it feels as if Parker is a friend down the pub, relating the story of some technical disaster driven by maths and computing, or regaling us with a numerical cock-up. These range from the spectacular - wobbling and collapsing bridges, for example - to the small but beautifully formed, such as Excel's rounding errors. Sometimes it's Parker's little asides that are particularly attractive. I loved his rant on why phone numbers aren't numbers at all (would it be meaningful for someone to ask you what half your phone number is?). We discover the trials and tribulations of getting cal...

Quantum 2.0 - Paul Davies ****

Unlike the general theory of relativity or cosmology, quantum physics is an aspect of physics that has had a huge impact on everyday lives, particularly through the deployment of electronics, but also, for example, where superconductivity has led to practical applications. But when Paul Davies is talking about version 2.0, he is specifically describing quantum information, where quantum particles and systems are used in information technology. This obviously includes quantum computers, but Davies also brings in, for example, the potential for quantum AI technology. Quantum computers have been discussed for decades - algorithms had already been written for them as early as the 1990s - but it's only now that they are starting to become usable devices, not at the personal level but in servers. In his usual approachable style, Davies gives us four chapters bringing us up to speed on quantum basics, but then brings in quantum computing. After this we don't get solid quantum informat...