Skip to main content

Human-Centered AI - Ben Shneiderman ****

Reading some popular science books is like biting into a luscious peach. Others are more like being presented with an almond - you have to do a lot of work to get through a difficult shell to get to the bit you want. This is very much an almond of a book, but it's worth the effort.

At the time of writing, two popular science topics have become so ubiquitous that it's hard to find anything new to say about them - neuroscience and artificial intelligence. Almost all the (many) AI books I've read have either been paeans to its wonders or dire warnings of how AI will take over the world or make opaque and biassed decisions that destroy lives. What is really refreshing about Ben Shneiderman's book is that it does neither of these - instead it provides an approach to benefit from AI without suffering the negative consequences. That's why it's an important piece of work.

To do this, Shneiderman takes us right back to the philosophical contrast between rationalism and empiricism. Rationalism, we discover, is driven by rules, logic and well-defined boundaries. Empiricists drive their understanding from observation of the real world where things are more fuzzy. Shneiderman then expands this distinction to that between science and innovation. Here, science is seen on focussing on the the essence of what is happening, while innovation is driven by applications. 

When we get to AI, Shneiderman argues that many AI researchers take the science approach - they want to understand how people think and to reproduce human-like intelligence in computers and human-like robots. The empirical, innovation-driven AI researchers, meanwhile, focus on ways that AI can not duplicate and supplant human abilities, but support them. It's the difference between providing a human replacement and an AI-driven super tool that enables the human to work far better. Although Shneiderman makes an effort to portray both sides fairly, there is no doubt that he comes down strongly on the empirical, innovation-driven side - human-centred AI. It is exploring this distinction that makes the book important. Shneiderman argues convincingly that we need to move from AI taking decisions and actions, replacing humans, to human-centred AI that augments human abilities.

Quite a lot of this is driven by the importance of the human-computer interface. Science-driven AI tends to have poor or non-existent user interface, with the AI's processes opaque and impossible to control, where innovation driven-AI puts a lot of importance on having meaningful controls and interface. It's frustrating, then, that someone so strong on good user interface produces a book that has such a bad one - instead of the narrative structure of good writing, Human-Centred AI has the dire, rigid structure of a business book or textbook. We get sections with an opening summary, then an introductory chapter that tells you what the section is going to tell you, then a bit of useful content, before a closing chapter that summarises the section. There is so much repetition of the basic points that it becomes really irritating. The interface of cameras on smartphones, for example, are used as exemplars almost word for word many times over. 

The useful content could be covered in a couple of magazine articles - yet when you hit the good stuff it is really good stuff. This is by no means the best way of putting the information across - nevertheless, by dint of this valuable message, it is one of the most important AI books of the last few years.

Hardback: 
Bookshop.org

  

Kindle 
Using these links earns us commission at no cost to you
Review by Brian Clegg

Comments

Popular posts from this blog

Rakhat-Bi Abdyssagin Five Way Interview

Rakhat-Bi Abdyssagin (born in 1999) is a distinguished composer, concert pianist, music theorist and researcher. Three of his piano CDs have been released in Germany. He started his undergraduate degree at the age of 13 in Kazakhstan, and having completed three musical doctorates in prominent Italian music institutions at the age of 20, he has mastered advanced composition techniques. In 2024 he completed a PhD in music at the University of St Andrews / Royal Conservatoire of Scotland (researching timbre-texture co-ordinate in avant- garde music), and was awarded The Silver Medal of The Worshipful Company of Musicians, London. He has held visiting affiliations at the Universities of Oxford, Cambridge and UCL, and has been lecturing and giving talks internationally since the age of 13. His latest book is Quantum Mechanics and Avant Garde Music . What links quantum physics and avant-garde music? The entire book is devoted to this question. To put it briefly, there are many different link...

Should we question science?

I was surprised recently by something Simon Singh put on X about Sabine Hossenfelder. I have huge admiration for Simon, but I also have a lot of respect for Sabine. She has written two excellent books and has been helpful to me with a number of physics queries - she also had a really interesting blog, and has now become particularly successful with her science videos. This is where I'm afraid she lost me as audience, as I find video a very unsatisfactory medium to take in information - but I know it has mass appeal. This meant I was concerned by Simon's tweet (or whatever we are supposed to call posts on X) saying 'The Problem With Sabine Hossenfelder: if you are a fan of SH... then this is worth watching.' He was referencing a video from 'Professor Dave Explains' - I'm not familiar with Professor Dave (aka Dave Farina, who apparently isn't a professor, which is perhaps a bit unfortunate for someone calling out fakes), but his videos are popular and he...

Everything is Predictable - Tom Chivers *****

There's a stereotype of computer users: Mac users are creative and cool, while PC users are businesslike and unimaginative. Less well-known is that the world of statistics has an equivalent division. Bayesians are the Mac users of the stats world, where frequentists are the PC people. This book sets out to show why Bayesians are not just cool, but also mostly right. Tom Chivers does an excellent job of giving us some historical background, then dives into two key aspects of the use of statistics. These are in science, where the standard approach is frequentist and Bayes only creeps into a few specific applications, such as the accuracy of medical tests, and in decision theory where Bayes is dominant. If this all sounds very dry and unexciting, it's quite the reverse. I admit, I love probability and statistics, and I am something of a closet Bayesian*), but Chivers' light and entertaining style means that what could have been the mathematical equivalent of debating angels on...