Skip to main content

Human-Centered AI - Ben Shneiderman ****

Reading some popular science books is like biting into a luscious peach. Others are more like being presented with an almond - you have to do a lot of work to get through a difficult shell to get to the bit you want. This is very much an almond of a book, but it's worth the effort.

At the time of writing, two popular science topics have become so ubiquitous that it's hard to find anything new to say about them - neuroscience and artificial intelligence. Almost all the (many) AI books I've read have either been paeans to its wonders or dire warnings of how AI will take over the world or make opaque and biassed decisions that destroy lives. What is really refreshing about Ben Shneiderman's book is that it does neither of these - instead it provides an approach to benefit from AI without suffering the negative consequences. That's why it's an important piece of work.

To do this, Shneiderman takes us right back to the philosophical contrast between rationalism and empiricism. Rationalism, we discover, is driven by rules, logic and well-defined boundaries. Empiricists drive their understanding from observation of the real world where things are more fuzzy. Shneiderman then expands this distinction to that between science and innovation. Here, science is seen on focussing on the the essence of what is happening, while innovation is driven by applications. 

When we get to AI, Shneiderman argues that many AI researchers take the science approach - they want to understand how people think and to reproduce human-like intelligence in computers and human-like robots. The empirical, innovation-driven AI researchers, meanwhile, focus on ways that AI can not duplicate and supplant human abilities, but support them. It's the difference between providing a human replacement and an AI-driven super tool that enables the human to work far better. Although Shneiderman makes an effort to portray both sides fairly, there is no doubt that he comes down strongly on the empirical, innovation-driven side - human-centred AI. It is exploring this distinction that makes the book important. Shneiderman argues convincingly that we need to move from AI taking decisions and actions, replacing humans, to human-centred AI that augments human abilities.

Quite a lot of this is driven by the importance of the human-computer interface. Science-driven AI tends to have poor or non-existent user interface, with the AI's processes opaque and impossible to control, where innovation driven-AI puts a lot of importance on having meaningful controls and interface. It's frustrating, then, that someone so strong on good user interface produces a book that has such a bad one - instead of the narrative structure of good writing, Human-Centred AI has the dire, rigid structure of a business book or textbook. We get sections with an opening summary, then an introductory chapter that tells you what the section is going to tell you, then a bit of useful content, before a closing chapter that summarises the section. There is so much repetition of the basic points that it becomes really irritating. The interface of cameras on smartphones, for example, are used as exemplars almost word for word many times over. 

The useful content could be covered in a couple of magazine articles - yet when you hit the good stuff it is really good stuff. This is by no means the best way of putting the information across - nevertheless, by dint of this valuable message, it is one of the most important AI books of the last few years.

Hardback: 
Bookshop.org

  

Kindle 
Using these links earns us commission at no cost to you
Review by Brian Clegg

Comments

Popular posts from this blog

David Spiegelhalter Five Way interview

Professor Sir David Spiegelhalter FRS OBE is Emeritus Professor of Statistics in the Centre for Mathematical Sciences at the University of Cambridge. He was previously Chair of the Winton Centre for Risk and Evidence Communication and has presented the BBC4 documentaries Tails you Win: the Science of Chance, the award-winning Climate Change by Numbers. His bestselling book, The Art of Statistics , was published in March 2019. He was knighted in 2014 for services to medical statistics, was President of the Royal Statistical Society (2017-2018), and became a Non-Executive Director of the UK Statistics Authority in 2020. His latest book is The Art of Uncertainty . Why probability? because I have been fascinated by the idea of probability, and what it might be, for over 50 years. Why is the ‘P’ word missing from the title? That's a good question.  Partly so as not to make it sound like a technical book, but also because I did not want to give the impression that it was yet another book

The Genetic Book of the Dead: Richard Dawkins ****

When someone came up with the title for this book they were probably thinking deep cultural echoes - I suspect I'm not the only Robert Rankin fan in whom it raised a smile instead, thinking of The Suburban Book of the Dead . That aside, this is a glossy and engaging book showing how physical makeup (phenotype), behaviour and more tell us about the past, with the messenger being (inevitably, this being Richard Dawkins) the genes. Worthy of comment straight away are the illustrations - this is one of the best illustrated science books I've ever come across. Generally illustrations are either an afterthought, or the book is heavily illustrated and the text is really just an accompaniment to the pictures. Here the full colour images tie in directly to the text. They are not asides, but are 'read' with the text by placing them strategically so the picture is directly with the text that refers to it. Many are photographs, though some are effective paintings by Jana Lenzová. T

Everything is Predictable - Tom Chivers *****

There's a stereotype of computer users: Mac users are creative and cool, while PC users are businesslike and unimaginative. Less well-known is that the world of statistics has an equivalent division. Bayesians are the Mac users of the stats world, where frequentists are the PC people. This book sets out to show why Bayesians are not just cool, but also mostly right. Tom Chivers does an excellent job of giving us some historical background, then dives into two key aspects of the use of statistics. These are in science, where the standard approach is frequentist and Bayes only creeps into a few specific applications, such as the accuracy of medical tests, and in decision theory where Bayes is dominant. If this all sounds very dry and unexciting, it's quite the reverse. I admit, I love probability and statistics, and I am something of a closet Bayesian*), but Chivers' light and entertaining style means that what could have been the mathematical equivalent of debating angels on