Skip to main content

The Universe Speaks in Numbers - Graham Farmelo ****

Theoretical physics has taken something of a hammering lately with books such as Sabine Hossenfelder's Lost in Math. The suggestion from these earlier titles is that theoretical physics is so obsessed with mathematics that many theoretical physicists spend their careers working on theory that doesn't actually apply to the universe, because the maths is interesting. Even experimental physics can be tainted, as the driver for new expenditure in experiments, such as the proposed new collider at CERN, is not driven by discoveries but by these mathematically-directed theories. Graham Farmelo presents the opposite view here: that this speculative mathematical work is, in fact, a great success.

As I am very much in the Hossenfelder camp, I expected to find Farmelo's book rather irritating, as it's effectively a love letter to mathematically-obsessed theoretical physics - but in reality (an entertaining phrase, given the context) I found it both interesting and enjoyable. Farmelo has a clear enthusiasm for the wonders of higher abstract mathematics and takes us through the history of the transformation of physics from being driven by experiment and observation to being driven by mathematical theory with a light touch and some fascinating detail.

However, much though I enjoyed The Universe Speaks in Numbers, it hasn't changed my position. The book's subtitle is 'how modern maths reveals nature's deepest secrets' - but the problem is that it is failing to do so. We discover lots of new and interesting mathematics - with the physicists actually revealing new maths that surprised the mathematicians - but hardly anything that has come out of this mathematical work that has carried physics forward in the last 40 years. Modern maths isn't revealing nature's deepest secrets, it is revealing some of the secrets of more maths, and that isn't what physics should be about.

I think I can pinpoint where the worldview goes adrift from reality on page 127 of the book. Farmelo comments 'Most of [the remainder of the book] is not conventional science, in which theorists make predictions that experimenters test; rather, it is speculative science, still under development and often not yet susceptible to observational tests. But it is science nonetheless...' - I'm afraid I can't agree. Speculation isn't science. It may become science, so isn't necessarily worthless scientifically speaking, but it certainly isn't science at the moment, and hasn't succeeded in making the leap in several decades.

For example, as Hossenfelder points out in her book, string theory works best if the cosmological constant value that reflects the expansion or contraction of the universe is negative. Unfortunately it's actually positive, but most string theorists spend their time working with a negative cosmological constant. It makes for beautiful mathematics - but has nothing to do with our universe. It isn't science, it's maths.

I haven't lost hope for physics, where there is still plenty of excellent work going on. However, I don't share Farmelo's enthusiasm for building mathematical towers in the sky, piling speculation on speculation. This doesn't however, distract from the fact that this is an excellent summary of the current position and how we got here, and Farmelo manages to put the state of theoretical physics across without alienating someone with a very different view, which surely is an excellent achievement.
Hardback 

Kindle 
Using these links earns us commission at no cost to you
Review by Brian Clegg

Comments

Popular posts from this blog

The Antigravity Enigma - Andrew May ****

Antigravity - the ability to overcome the pull of gravity - has been a fantasy for thousands of years and subject to more scientific (if impractical) fictional representation since H. G. Wells came up with cavorite in The First Men in the Moon . But is it plausible scientifically?  Andrew May does a good job of pulling together three ways of looking at our love affair with antigravity (and the related concept of cancelling inertia) - in science fiction, in physics and in pseudoscience and crankery. As May points out, science fiction is an important starting point as the concept was deployed there well before we had a good enough understanding of gravity to make any sensible scientific stabs at the idea (even though, for instance, Michael Faraday did unsuccessfully experiment with a possible interaction between gravity and electromagnetism). We then get onto the science itself, noting the potential impact on any ideas of antigravity that come from the move from a Newtonian view of a...

The World as We Know It - Peter Dear ***

History professor Peter Dear gives us a detailed and reasoned coverage of the development of science as a concept from its origins as natural philosophy, covering the years from the eighteenth to the twentieth century. inclusive If that sounds a little dry, frankly, it is. But if you don't mind a very academic approach, it is certainly interesting. Obviously a major theme running through is the move from largely gentleman natural philosophers (with both implications of that word 'gentleman') to professional academic scientists. What started with clubs for relatively well off men with an interest, when universities did not stray far beyond what was included in mathematics (astronomy, for instance), would become a very different beast. The main scientific subjects that Dear covers are physics and biology - we get, for instance, a lot on the gradual move away from a purely mechanical views of physics - the reason Newton's 'action at a distance' gravity caused such ...

It's On You - Nick Chater and George Loewenstein *****

Going on the cover you might think this was a political polemic - and admittedly there's an element of that - but the reason it's so good is quite different. It shows how behavioural economics and social psychology have led us astray by putting the focus way too much on individuals. A particular target is the concept of nudges which (as described in Brainjacking ) have been hugely over-rated. But overall the key problem ties to another psychological concept: framing. Huge kudos to both Nick Chater and George Loewenstein - a behavioural scientist and an economics and psychology professor - for having the guts to take on the flaws in their own earlier work and that of colleagues, because they make clear just how limited and potentially dangerous is the belief that individuals changing their behaviour can solve large-scale problems. The main thesis of the book is that there are two ways to approach the major problems we face - an 'i-frame' where we focus on the individual ...