Skip to main content

The Universe Speaks in Numbers - Graham Farmelo ****

Theoretical physics has taken something of a hammering lately with books such as Sabine Hossenfelder's Lost in Math. The suggestion from these earlier titles is that theoretical physics is so obsessed with mathematics that many theoretical physicists spend their careers working on theory that doesn't actually apply to the universe, because the maths is interesting. Even experimental physics can be tainted, as the driver for new expenditure in experiments, such as the proposed new collider at CERN, is not driven by discoveries but by these mathematically-directed theories. Graham Farmelo presents the opposite view here: that this speculative mathematical work is, in fact, a great success.

As I am very much in the Hossenfelder camp, I expected to find Farmelo's book rather irritating, as it's effectively a love letter to mathematically-obsessed theoretical physics - but in reality (an entertaining phrase, given the context) I found it both interesting and enjoyable. Farmelo has a clear enthusiasm for the wonders of higher abstract mathematics and takes us through the history of the transformation of physics from being driven by experiment and observation to being driven by mathematical theory with a light touch and some fascinating detail.

However, much though I enjoyed The Universe Speaks in Numbers, it hasn't changed my position. The book's subtitle is 'how modern maths reveals nature's deepest secrets' - but the problem is that it is failing to do so. We discover lots of new and interesting mathematics - with the physicists actually revealing new maths that surprised the mathematicians - but hardly anything that has come out of this mathematical work that has carried physics forward in the last 40 years. Modern maths isn't revealing nature's deepest secrets, it is revealing some of the secrets of more maths, and that isn't what physics should be about.

I think I can pinpoint where the worldview goes adrift from reality on page 127 of the book. Farmelo comments 'Most of [the remainder of the book] is not conventional science, in which theorists make predictions that experimenters test; rather, it is speculative science, still under development and often not yet susceptible to observational tests. But it is science nonetheless...' - I'm afraid I can't agree. Speculation isn't science. It may become science, so isn't necessarily worthless scientifically speaking, but it certainly isn't science at the moment, and hasn't succeeded in making the leap in several decades.

For example, as Hossenfelder points out in her book, string theory works best if the cosmological constant value that reflects the expansion or contraction of the universe is negative. Unfortunately it's actually positive, but most string theorists spend their time working with a negative cosmological constant. It makes for beautiful mathematics - but has nothing to do with our universe. It isn't science, it's maths.

I haven't lost hope for physics, where there is still plenty of excellent work going on. However, I don't share Farmelo's enthusiasm for building mathematical towers in the sky, piling speculation on speculation. This doesn't however, distract from the fact that this is an excellent summary of the current position and how we got here, and Farmelo manages to put the state of theoretical physics across without alienating someone with a very different view, which surely is an excellent achievement.

Using these links earns us commission at no cost to you
Review by Brian Clegg


Popular posts from this blog

The God Game (SF) - Danny Tobey *****

Wow. I'm not sure I've ever read a book that was quite such an adrenaline rush - certainly it has been a long time since I've read a science fiction title which has kept me wanting to get back to it and read more so fiercely. 

In some ways, what we have here is a cyber-SF equivalent of Stephen King's It. A bunch of misfit American high school students face a remarkably powerful evil adversary - though in this case, at the beginning, their foe appears to be able to transform their worlds for the better.

Rather than a supernatural evil, the students take on a rogue AI computer game that thinks it is a god - and has the powers to back its belief. Playing the game is a mix of a virtual reality adventure like Pokemon Go and a real world treasure hunt. Players can get rewards for carrying out tasks - delivering a parcel, for example, which can be used to buy favours, abilities in the game and real objects. But once you are in the game, it doesn't want to let you go and is …

Uncertainty - Kostas Kampourakis and Kevin McCain ***

This is intended as a follow-on to Stuart Firestein's two books, the excellent Ignorance and its sequel, Failure, which cut through some of the myths about the nature of science and how it's not so much about facts as about what we don't know and how we search for explanations. The authors of Uncertainty do pretty much what they set out to do in explaining the significance of uncertainty and why it can make it difficult to present scientific findings to the public, who expect black-and-white facts, not grey probabilities, which can seem to some like dithering.

However, I didn't get on awfully well with the book. A minor issue was the size - it was just too physically small to hold comfortably, which was irritating. More significantly, it felt like a magazine article that was inflated to make a book. There really was only one essential point made over and over again, with a handful of repeated examples. I want something more from a book - more context and depth - that …

Where are the chemistry popular science books?

by Brian Clegg
There has never been more emphasis on the importance of public engagement. We need both to encourage a deeper interest in science and to counter anti-scientific views that seem to go hand-in-hand with some types of politics. Getting the public interested in science both helps recruit new scientists of the future and spreads an understanding of why an area of scientific research deserves funding. Yet it is possible that chemistry lags behind the other sciences in outreach. As a science writer, and editor of this website, I believe that chemistry is under-represented in popular science. I'd like to establish if this is the case, if so why it is happening - and what can be done to change things. 

An easy straw poll is provided by the topic tags on the site. At the time of writing, there are 22 books under 'chemistry' as opposed to 97 maths, 126 biology and 182 physics. The distribution is inevitably influenced by editorial bias - but as the editor, I can confirm …