Skip to main content

The Universe Speaks in Numbers - Graham Farmelo ****

Theoretical physics has taken something of a hammering lately with books such as Sabine Hossenfelder's Lost in Math. The suggestion from these earlier titles is that theoretical physics is so obsessed with mathematics that many theoretical physicists spend their careers working on theory that doesn't actually apply to the universe, because the maths is interesting. Even experimental physics can be tainted, as the driver for new expenditure in experiments, such as the proposed new collider at CERN, is not driven by discoveries but by these mathematically-directed theories. Graham Farmelo presents the opposite view here: that this speculative mathematical work is, in fact, a great success.

As I am very much in the Hossenfelder camp, I expected to find Farmelo's book rather irritating, as it's effectively a love letter to mathematically-obsessed theoretical physics - but in reality (an entertaining phrase, given the context) I found it both interesting and enjoyable. Farmelo has a clear enthusiasm for the wonders of higher abstract mathematics and takes us through the history of the transformation of physics from being driven by experiment and observation to being driven by mathematical theory with a light touch and some fascinating detail.

However, much though I enjoyed The Universe Speaks in Numbers, it hasn't changed my position. The book's subtitle is 'how modern maths reveals nature's deepest secrets' - but the problem is that it is failing to do so. We discover lots of new and interesting mathematics - with the physicists actually revealing new maths that surprised the mathematicians - but hardly anything that has come out of this mathematical work that has carried physics forward in the last 40 years. Modern maths isn't revealing nature's deepest secrets, it is revealing some of the secrets of more maths, and that isn't what physics should be about.

I think I can pinpoint where the worldview goes adrift from reality on page 127 of the book. Farmelo comments 'Most of [the remainder of the book] is not conventional science, in which theorists make predictions that experimenters test; rather, it is speculative science, still under development and often not yet susceptible to observational tests. But it is science nonetheless...' - I'm afraid I can't agree. Speculation isn't science. It may become science, so isn't necessarily worthless scientifically speaking, but it certainly isn't science at the moment, and hasn't succeeded in making the leap in several decades.

For example, as Hossenfelder points out in her book, string theory works best if the cosmological constant value that reflects the expansion or contraction of the universe is negative. Unfortunately it's actually positive, but most string theorists spend their time working with a negative cosmological constant. It makes for beautiful mathematics - but has nothing to do with our universe. It isn't science, it's maths.

I haven't lost hope for physics, where there is still plenty of excellent work going on. However, I don't share Farmelo's enthusiasm for building mathematical towers in the sky, piling speculation on speculation. This doesn't however, distract from the fact that this is an excellent summary of the current position and how we got here, and Farmelo manages to put the state of theoretical physics across without alienating someone with a very different view, which surely is an excellent achievement.
Hardback 

Kindle 
Using these links earns us commission at no cost to you
Review by Brian Clegg

Comments

Popular posts from this blog

The Genetic Book of the Dead: Richard Dawkins ****

When someone came up with the title for this book they were probably thinking deep cultural echoes - I suspect I'm not the only Robert Rankin fan in whom it raised a smile instead, thinking of The Suburban Book of the Dead . That aside, this is a glossy and engaging book showing how physical makeup (phenotype), behaviour and more tell us about the past, with the messenger being (inevitably, this being Richard Dawkins) the genes. Worthy of comment straight away are the illustrations - this is one of the best illustrated science books I've ever come across. Generally illustrations are either an afterthought, or the book is heavily illustrated and the text is really just an accompaniment to the pictures. Here the full colour images tie in directly to the text. They are not asides, but are 'read' with the text by placing them strategically so the picture is directly with the text that refers to it. Many are photographs, though some are effective paintings by Jana Lenzová. T

David Spiegelhalter Five Way interview

Professor Sir David Spiegelhalter FRS OBE is Emeritus Professor of Statistics in the Centre for Mathematical Sciences at the University of Cambridge. He was previously Chair of the Winton Centre for Risk and Evidence Communication and has presented the BBC4 documentaries Tails you Win: the Science of Chance, the award-winning Climate Change by Numbers. His bestselling book, The Art of Statistics , was published in March 2019. He was knighted in 2014 for services to medical statistics, was President of the Royal Statistical Society (2017-2018), and became a Non-Executive Director of the UK Statistics Authority in 2020. His latest book is The Art of Uncertainty . Why probability? because I have been fascinated by the idea of probability, and what it might be, for over 50 years. Why is the ‘P’ word missing from the title? That's a good question.  Partly so as not to make it sound like a technical book, but also because I did not want to give the impression that it was yet another book

Everything is Predictable - Tom Chivers *****

There's a stereotype of computer users: Mac users are creative and cool, while PC users are businesslike and unimaginative. Less well-known is that the world of statistics has an equivalent division. Bayesians are the Mac users of the stats world, where frequentists are the PC people. This book sets out to show why Bayesians are not just cool, but also mostly right. Tom Chivers does an excellent job of giving us some historical background, then dives into two key aspects of the use of statistics. These are in science, where the standard approach is frequentist and Bayes only creeps into a few specific applications, such as the accuracy of medical tests, and in decision theory where Bayes is dominant. If this all sounds very dry and unexciting, it's quite the reverse. I admit, I love probability and statistics, and I am something of a closet Bayesian*), but Chivers' light and entertaining style means that what could have been the mathematical equivalent of debating angels on