Skip to main content

Lost in Math - Sabine Hossenfelder *****

One of my favourite illustrations from a science title was in Fred Hoyle's book on his quasi-steady state theory. It shows a large flock of geese all following each other, which he likened to the state of theoretical physics. In the very readable Lost in Math, physicist Sabine Hossenfelder exposes the way that in certain areas of physics, this is all too realistic a picture. (Hossenfelder gives Hoyle's cosmological theory short shrift, incidentally, though, to be fair, it wasn't given anywhere near as many opportunities to be patched up to match observations as the current version of big bang with inflation.)

Lost in Math is a very powerful analysis of what has gone wrong in the way that some aspects of physics are undertaken. Until the twentieth century, scientists made observations and experiments and theoreticians looked for theories which explained them, which could then be tested against further experiments and observations. Now, particularly in particle physics, it's more the case that physicists dream up whole rafts of theory supported only by mathematics, much of which can never be experimentally confirmed, and what can be checked is often so expensive to work on that only a very small number of possibilities can be examined. 

It's the maths (if we're talking beauty, I have to confess I find 'math' a very ugly word) that is in the driving seat, which surely is wrong. As Hossenfelder points out, string theory works best if the cosmological constant value that reflects the expansion or contraction of the universe is negative. Unfortunately it's actually positive, but most string theorists spend their time working with a negative cosmological constant. It can make for beautiful mathematics - but has nothing to do with our universe.

It's also the case that the vast majority of theoretical advances in physics were made by individuals, where now most theoreticians work in teams - it's tempting to wonder, if a camel is a horse designed by committee, what is a theory developed by group consensus?

Hossenfelder repeatedly comes back to two measures used to test theories - beauty, which is inevitably a subjective phenomenon, even though there is some agreement of what is required for beauty - and naturalness, which appears more scientific as it involves numbers, but relies on a bizarre confidence that values in nature that are dimensionless (for example ratios of masses) should be Goldilocks-like in not being too big or two small, but should be around the value of 1. The physicists she speaks to through the book (nearly all male), often seem to cling onto these measures without being able to justify them, other than saying that everyone else likes them too. There are some attempts - one suggests the appeal to beauty is an evolutionary response to a successful theory, but that only shows a weak understanding of evolution (though evolutionary developments can, at least, probably explain the physicists' love of symmetry - and it's not because nature has to be that way, but because we find symmetrical faces attractive).

Vast amounts of physicist-hours are being put into theories such as string theory, which seems pretty much incapable of doing the main job it is supposed to (though does have some side benefits), or defending the extension of the standard model of particle physics called supersymmetry, even as more and more evidence suggests it is unlikely to be true. Hossenfelder shows that clinging to theories past their sell-by date is almost inevitable because physicists are people too. If you've spent half your career on a theory, you don't give it up easily, even though scientists are supposed to love falsification. And if hundreds of other people (remember the geese) are working on a particular theory, surely it must have some substance behind it? One thing the book doesn't mention, but may be worth thinking about, is perhaps there are too many theoretical physicists? Hossenfelder points out in a period of about a year when the LHC produced data that looked interesting but turned out to be a statistical fluctuation, 500 papers were published exploring this non-event theoretically, many published in top journals.

Relatively briefly, Hossenfelder also examines the aspects of modern academic scientific life that make it hard to give the amount of time to actually working on theory that should be the case, citing estimates of around 40% going to actual work (another 40% going to grant applications). The processes required to get funding also tend to work against original thinking and deviating from the goose flock - there seems little doubt that this structure makes a large negative contribution to the whole business, though no one seems to have an answer to the problem.

The only negative I have with the book is that Hossenfelder, like many practising physicists, struggles to explain some of the actual physics in a way that conveys any meaning to the general reader. Luckily, this is not essential here - this is not a book to learn about physics, but about the way modern physicists work. Interestingly, Hossenfelder complains that 'popular science books about special relativity are often full of rocket ships and satellites passing each other. But all of this is unnecessary decoration. Special relativity follows from the three symmetries [she lists] above, without twins in spaceships and laser clocks and all that.' While this is true, the way symmetries are used here is an argument that is near-impossible to follow for a non-mathematician. The twins paradox and light clocks make it much easier for the rest of us to get a grip on the subject (and, to be fair, my undergraduate special relativity textbook makes use of both, so it's not just popular science doing  it).

Inevitably there will be a widespread negative reaction from the physics community (which has already started) - but this is not surprising when Hossenfelder is attempting to burst a self-reinforcing social bubble just as powerful as those that surround American political parties. The knee-jerk reaction is always to deny there's anything wrong - yet here it seems so obviously a case of the emperor's new clothes. 

Some readers may take this book to be an anti-science one - but it really isn't. Hossenfelder is merely pointing out a deep problem in some parts of physics, but she in no way undermines the remarkable scientific discoveries that have come from centuries of physics (and applications we benefit from as a result of some of them). Rather, she is saying that people in her profession need to step back from the coalface and take stock of what they are really doing and whether this particular approach really makes sense. True creativity often requires this - but most of us find it difficult to do. And it's about time a physicist said this.

Highly recommended (and very brave).


Hardback:  
Using these links earns us commission at no cost to you


Review by Brian Clegg

Comments

Popular posts from this blog

Philip Ball - How Life Works Interview

Philip Ball is one of the most versatile science writers operating today, covering topics from colour and music to modern myths and the new biology. He is also a broadcaster, and was an editor at Nature for more than twenty years. He writes regularly in the scientific and popular media and has written many books on the interactions of the sciences, the arts, and wider culture, including Bright Earth: The Invention of Colour, The Music Instinct, and Curiosity: How Science Became Interested in Everything. His book Critical Mass won the 2005 Aventis Prize for Science Books. Ball is also a presenter of Science Stories, the BBC Radio 4 series on the history of science. He trained as a chemist at the University of Oxford and as a physicist at the University of Bristol. He is also the author of The Modern Myths. He lives in London. His latest title is How Life Works . Your book is about the ’new biology’ - how new is ’new’? Great question – because there might be some dispute about that! Many

The Naked Sun (SF) - Isaac Asimov ****

In my read through of all six of Isaac Asimov's robot books, I'm on the fourth, from 1956 - the second novel featuring New York detective Elijah Baley. Again I'm struck by how much better his book writing is than that in the early robot stories. Here, Baley, who has spent his life in the confines of the walled-in city is sent to the Spacer planet of Solaria to deal with a murder, on a mission with political overtones. Asimov gives us a really interesting alternative future society where a whole planet is divided between just 20,000 people, living in vast palace-like structures, supported by hundreds of robots each.  The only in-person contact between them is with a spouse (and only to get the distasteful matter of children out of the way) or a doctor. Otherwise all contact is by remote viewing. This society is nicely thought through - while in practice it's hard to imagine humans getting to the stage of finding personal contact with others disgusting, it's an intere

The Blind Spot - Adam Frank, Marcelo Gleiser and Evan Thompson ****

This is a curate's egg - sections are gripping, others rather dull. Overall the writing could be better... but the central message is fascinating and the book gets four stars despite everything because of this. That central message is that, as the subtitle says, science can't ignore human experience. This is not a cry for 'my truth'. The concept comes from scientists and philosophers of science. Instead it refers to the way that it is very easy to make a handful of mistakes about what we are doing with science, as a result of which most people (including many scientists) totally misunderstand the process and the implications. At the heart of this is confusing mathematical models with reality. It's all too easy when a mathematical model matches observation well to think of that model and its related concepts as factual. What the authors describe as 'the blind spot' is a combination of a number of such errors. These include what the authors call 'the bifur