Skip to main content

Kepler and the Universe - David Love ****

I got my remaindered copy of this book from one of those quirky shops in Glastonbury that specialises in all things mystical. Don’t let that put you off, though – there’s actually a lot more science than mysticism in it. On top of that, it’s the best biography I’ve read for a long time – well-researched and insightful, but fast-moving and highly readable at the same time.

The world Kepler lived in was very different from ours (his dates were 1571 – 1630). In those days, it wasn’t a case of scientific rationalism on one side versus religion and woolly-minded mysticism on the other. Science barely entered the picture – it hadn’t even crystallised into its modern form yet. Europe was torn apart by arguments, not between religion and science, but between different flavours of religion. A bafflingly incomprehensible struggle between Lutherans and Calvinists sizzles away in the background throughout the book.

There were mystics in those days, too. We’re told, for example, that Kepler’s patron, the Emperor Rudolf II, ‘was only interested in wizards, alchemists, cabbalists and the like’. Unlike today, however, the mystics weren’t anti-science (because, as already mentioned, science hadn’t been invented yet). If anything, in their fumblings towards ‘the truth’, the mystics were actually pushing the world closer and closer to a genuine scientific method. And Johannes Kepler was one of them.

His official title was Imperial Mathematician. To modern eyes that might look highly scientific, but in those days the idea that mathematics could provide a meaningful description of the real world was essentially a mystical one. Mathematics had always been used in astronomy, but only as a calculating tool. It was Kepler’s big idea that a mathematical model of the Solar System could actually tell you something about how it worked. Like all his contemporaries, Kepler believed that God had created the universe – but he capped that with the ‘mystical’ idea that it had been created along strictly mathematical lines.

This is where Kepler’s greatest scientific contribution came from – the notion that the planets move on elliptical orbits around the Sun, at speeds determined by precise mathematical laws. I already knew that – but the book gives a fascinating and lucid account of how Kepler got to that stage which was completely new to me. I was also surprised to discover that he anticipated Newton in ascribing planetary motion to a force emanating from the Sun – although he was thinking more in terms of an ethereal whirlpool than gravity.

As David Love says at one point, ‘Kepler could sometimes be utterly wrong, just as he was often brilliantly right’. As well as correctly explaining the speed of planetary orbits, he erroneously explained their spacing using a geometrical theory of ‘perfect solids’ borrowed from ancient Greek philosophy. Throughout his life he was a firm believer in astrological prediction, albeit in a semi-rationalised form: ‘he saw astrology in much the same way as we now see our genes – not as a complete determinant of all our actions but as a strong and inescapable influence on us’. He was also devoutly religious, and believed that God created the universe solely for the benefit of humans on Earth: ‘He strongly disapproved of [the] idea of an infinite universe in which the stars were suns like our own.’

That last point is particularly ironic, because many people today will only know the name ‘Kepler’ in the context of NASA’s exoplanet-hunting space telescope. If you’re in that category and want to know more about the person it was named after – or if you know about Kepler’s laws but not about the man behind them – then this is the book to read.


Hardback:  

Kindle:  
Using these links earns us commission at no cost to you


Review by Andrew May

Comments

Popular posts from this blog

The Antigravity Enigma - Andrew May ****

Antigravity - the ability to overcome the pull of gravity - has been a fantasy for thousands of years and subject to more scientific (if impractical) fictional representation since H. G. Wells came up with cavorite in The First Men in the Moon . But is it plausible scientifically?  Andrew May does a good job of pulling together three ways of looking at our love affair with antigravity (and the related concept of cancelling inertia) - in science fiction, in physics and in pseudoscience and crankery. As May points out, science fiction is an important starting point as the concept was deployed there well before we had a good enough understanding of gravity to make any sensible scientific stabs at the idea (even though, for instance, Michael Faraday did unsuccessfully experiment with a possible interaction between gravity and electromagnetism). We then get onto the science itself, noting the potential impact on any ideas of antigravity that come from the move from a Newtonian view of a...

The World as We Know It - Peter Dear ***

History professor Peter Dear gives us a detailed and reasoned coverage of the development of science as a concept from its origins as natural philosophy, covering the years from the eighteenth to the twentieth century. inclusive If that sounds a little dry, frankly, it is. But if you don't mind a very academic approach, it is certainly interesting. Obviously a major theme running through is the move from largely gentleman natural philosophers (with both implications of that word 'gentleman') to professional academic scientists. What started with clubs for relatively well off men with an interest, when universities did not stray far beyond what was included in mathematics (astronomy, for instance), would become a very different beast. The main scientific subjects that Dear covers are physics and biology - we get, for instance, a lot on the gradual move away from a purely mechanical views of physics - the reason Newton's 'action at a distance' gravity caused such ...

It's On You - Nick Chater and George Loewenstein *****

Going on the cover you might think this was a political polemic - and admittedly there's an element of that - but the reason it's so good is quite different. It shows how behavioural economics and social psychology have led us astray by putting the focus way too much on individuals. A particular target is the concept of nudges which (as described in Brainjacking ) have been hugely over-rated. But overall the key problem ties to another psychological concept: framing. Huge kudos to both Nick Chater and George Loewenstein - a behavioural scientist and an economics and psychology professor - for having the guts to take on the flaws in their own earlier work and that of colleagues, because they make clear just how limited and potentially dangerous is the belief that individuals changing their behaviour can solve large-scale problems. The main thesis of the book is that there are two ways to approach the major problems we face - an 'i-frame' where we focus on the individual ...