Skip to main content

Schrödinger's Cat and 49 other experiments - Adam Hart-Davis ***

Dealing with a massive subject like physics as a ‘straight’ end to end book and making it approachable is quite a challenge. Publishers often look for some kind of hook to do this - and combined with the popularity (I can only assume primarily as gift books) of graphically interesting books with 50 or so bite-sized articles, we get to the idea of telling the story of physics through 50 experiments - and that's what turns up in Adam Hart-Davis's new title Schrödinger's Cat and 49 Other Experiments that Revolutionised Physics.

The problem is, of course, that while experiments are important, so is theory. Which gives us a problem. Do you represent Maxwell’s remarkable theoretical work on electromagnetism using Hertz’s comparatively trivial experiments? What about Einstein’s work or that of the quantum theory gang? Even the title 'experiment' of the book is a thought experiment.

The answer here is to cheat - but strangely only sometimes. Within the book, Hart-Davis refers not to experiments, as in the title, but studies, which makes theory more open to consideration. So some of the ‘experiments’ in the book are actually nothing more than the development of theories. Yet sometimes, puzzlingly, he does hide the important bit behind a lesser experiment - so, for example Bohr’s quantum atom is just a section inside the article on a largely forgotten experiment by Frank and Hertz (remember that one? And no, it's not the 'real' Hertz, who was dead by then, it's his nephew).

What I find impressive about this book is the way that Hart-Davis packs so much into the typically three page articles. From Galileo (thankfully consigning the Leaning Tower drop to legend) to the LHC he often manages to avoid over-simplifying significantly and does not just cover the key experiment (or theory) the article is headlined with, but brings in associated material. Sometimes the articles do feel a little dull - but the good thing about this format is there’s always something new over the next page.

Sometimes the illustrations are useful too - there are some quite clear diagrams - though all too often what we have is a Monty Python style image that doesn’t even give you a useful idea of what’s being illustrated. So, to pick an example at random, Marie Curie is pictured - fine - but with half her face covered with a radioactivity symbol and what may be a diagram of an atom. A triumph of style over substance.

Inevitably with any list of key experiments (and theories) there will be gaps and unnecessary inclusions to quibble about. Is it really necessary to include Schrodinger’s sad old cat as ‘an experiment that revolutionised physics’? It might be iconic, but it didn’t change anything. By contrast, for example, we don’t get Aspect’s quantum entanglement experiment or, horrendously, anything about Maxwell. We jump straight from 1850 to 1887. Admittedly, though Maxwell carried out plenty of experiments, he didn’t so on electromagnetism, but as we’ve seen there are plenty of theory-based articles here, so the omission of what the likes of Einstein and Feynman regarded as one of the most essential pieces of work in the history of physics is baffling.

Overall, Hart-Davis, a veteran science communicator, does surprisingly well given the challenge he faced. Because of the book’s style, I can’t give it more than three stars, but he does far better than it should be possible in this format.

Paperback:  
Using these links earns us commission at no cost to you



Review by Brian Clegg

Comments

Popular posts from this blog

Rakhat-Bi Abdyssagin Five Way Interview

Rakhat-Bi Abdyssagin (born in 1999) is a distinguished composer, concert pianist, music theorist and researcher. Three of his piano CDs have been released in Germany. He started his undergraduate degree at the age of 13 in Kazakhstan, and having completed three musical doctorates in prominent Italian music institutions at the age of 20, he has mastered advanced composition techniques. In 2024 he completed a PhD in music at the University of St Andrews / Royal Conservatoire of Scotland (researching timbre-texture co-ordinate in avant- garde music), and was awarded The Silver Medal of The Worshipful Company of Musicians, London. He has held visiting affiliations at the Universities of Oxford, Cambridge and UCL, and has been lecturing and giving talks internationally since the age of 13. His latest book is Quantum Mechanics and Avant Garde Music . What links quantum physics and avant-garde music? The entire book is devoted to this question. To put it briefly, there are many different link...

Should we question science?

I was surprised recently by something Simon Singh put on X about Sabine Hossenfelder. I have huge admiration for Simon, but I also have a lot of respect for Sabine. She has written two excellent books and has been helpful to me with a number of physics queries - she also had a really interesting blog, and has now become particularly successful with her science videos. This is where I'm afraid she lost me as audience, as I find video a very unsatisfactory medium to take in information - but I know it has mass appeal. This meant I was concerned by Simon's tweet (or whatever we are supposed to call posts on X) saying 'The Problem With Sabine Hossenfelder: if you are a fan of SH... then this is worth watching.' He was referencing a video from 'Professor Dave Explains' - I'm not familiar with Professor Dave (aka Dave Farina, who apparently isn't a professor, which is perhaps a bit unfortunate for someone calling out fakes), but his videos are popular and he...

Everything is Predictable - Tom Chivers *****

There's a stereotype of computer users: Mac users are creative and cool, while PC users are businesslike and unimaginative. Less well-known is that the world of statistics has an equivalent division. Bayesians are the Mac users of the stats world, where frequentists are the PC people. This book sets out to show why Bayesians are not just cool, but also mostly right. Tom Chivers does an excellent job of giving us some historical background, then dives into two key aspects of the use of statistics. These are in science, where the standard approach is frequentist and Bayes only creeps into a few specific applications, such as the accuracy of medical tests, and in decision theory where Bayes is dominant. If this all sounds very dry and unexciting, it's quite the reverse. I admit, I love probability and statistics, and I am something of a closet Bayesian*), but Chivers' light and entertaining style means that what could have been the mathematical equivalent of debating angels on...