While it will become apparent I think this book should have been titled 'How Dumb Machines Think', it was a remarkably enjoyable insight into how the well publicised AI successes - self-driving cars, image and face recognition, IBM's Jeopardy! playing Watson, along with game playing AIs in chess, Go and Atari and StarCraft, perform their dark arts.
There's no actual programming presented here, so no need for non-programmers to panic, though there is some quite detailed discussion of how the software architectures are structured and how the different components - for example neural networks - do their job, but it isn't anything too scary if you take it slowly.
One thing that comes across very strongly, despite the AI types' insistence that their programs are of general use, is how very specifically tailored programs like the AlphaGo software that beat champions at the game Go, and the Watson computer that won at the US TV quiz show Jeopardy! were - incredibly finely designed to meet use and that use only.
The reason I make the remark about dumb machines is that what doesn't come across sufficiently in Sean Gerrish's book is that, because these programs are not in any sense intelligent, when they get things wrong, they often get things dramatically wrong. So some of Watson's answers on Jeopardy! did not make any sense at all. Similarly, image recognition software can be fooled by apparently abstract patterns that happen to have the right components to appear to be a distinguishable object. And when you bear in mind we're suggesting putting this kind of software in charge of cars that 'getting it dramatically wrong' bit is more than a little unnerving.
There was, though, a great section on the development of self-driving cars, from the original feeble attempts, where all the competitors in a race failed before completing 10 percent of the course, through to more recent and more successful versions that can handle basic traffic scenarios - though it would have been nice if Gerrish had gone beyond the old prize challenges to describe what the latest Google and Uber vehicles do. (It may be that their approaches are too proprietary.)
However, what was missing was any serious assessment of the big problems still faced. There have been two excellent books recently on the huge holes in AI that practitioners rarely admit to - The AI Delusion and Common Sense, The Turing Test and the Quest for Real AI - Gerrish would have produced an even better book if he could have addressed the concerns that these books raise.
Even so, in How Smart Machines Think we have a hugely informative and very readable book for anyone with an interest in finding out just what the much-trumpeted AI systems really do, and what lies beneath the hype.
Hardback: There's no actual programming presented here, so no need for non-programmers to panic, though there is some quite detailed discussion of how the software architectures are structured and how the different components - for example neural networks - do their job, but it isn't anything too scary if you take it slowly.
One thing that comes across very strongly, despite the AI types' insistence that their programs are of general use, is how very specifically tailored programs like the AlphaGo software that beat champions at the game Go, and the Watson computer that won at the US TV quiz show Jeopardy! were - incredibly finely designed to meet use and that use only.
The reason I make the remark about dumb machines is that what doesn't come across sufficiently in Sean Gerrish's book is that, because these programs are not in any sense intelligent, when they get things wrong, they often get things dramatically wrong. So some of Watson's answers on Jeopardy! did not make any sense at all. Similarly, image recognition software can be fooled by apparently abstract patterns that happen to have the right components to appear to be a distinguishable object. And when you bear in mind we're suggesting putting this kind of software in charge of cars that 'getting it dramatically wrong' bit is more than a little unnerving.
There was, though, a great section on the development of self-driving cars, from the original feeble attempts, where all the competitors in a race failed before completing 10 percent of the course, through to more recent and more successful versions that can handle basic traffic scenarios - though it would have been nice if Gerrish had gone beyond the old prize challenges to describe what the latest Google and Uber vehicles do. (It may be that their approaches are too proprietary.)
However, what was missing was any serious assessment of the big problems still faced. There have been two excellent books recently on the huge holes in AI that practitioners rarely admit to - The AI Delusion and Common Sense, The Turing Test and the Quest for Real AI - Gerrish would have produced an even better book if he could have addressed the concerns that these books raise.
Even so, in How Smart Machines Think we have a hugely informative and very readable book for anyone with an interest in finding out just what the much-trumpeted AI systems really do, and what lies beneath the hype.
Kindle:
Using these links earns us commission at no cost to you
Review by Brian Clegg
Comments
Post a Comment