Skip to main content

The Story of Mathematics in 24 Equations – Dana Mackenzie ****

This book was previously published with the misleading title The Universe in Zero Words - the new title is a much better fit. In awarding this book four stars I am reminded of the infamous Samuel Johnson quote on women preachers: ‘A woman’s preaching is like a dog’s walking on his hind legs. It is not done well, but you are surprised to find it done at all.’ The reason I say this is because I’m reviewing a book about mathematical equations. There have been plenty of histories of mathematics (more, if anything, that histories of the whole of science), so to make its mark, a new one has to have a good hook - some different way of looking at the subject that gives it structure and gains our interest. Dana Mackenzie's approach of picking out 24 great equations is risky, because you have to wonder whether people who find maths scary or boring will be drawn in by this concept.

We meet, for example, 1-1=0, used to explore the nature of zero, while a squared + b squared = c squared introduces not just the Pythagorean theorem with its tortuous history. but also Euclid and irrational numbers. Beginning with simple equations we work forward to the likes of the Chern-Gauss-Bonnet equation (no, me neither), the continuum hypothesis and the economists' favourite, the Black-Scholes equation.

In the early chapters, Mackenzie holds the interest with a good mix of contextual history stories and the details of the mathematics itself, but as the approach gets more complex it becomes harder to keep the interest levels up as the description of what the equation is doing is inevitably more opaque, making the approach feel more summary and less engaging. The best part of the book is the context – we learn about the individuals behind these equations (not always the obvious ones when it comes to, say, Pythagoras) and the historical setting of their devising. There are also some rather beautiful illustrations, though one aspect of this book I found positively counter-helpful was the text in the images (including all the equations), which was in such a stylised, pseudo-handwriting font that I couldn't read a good few of them. It looked pretty, but it doesn't help understanding if you can't tell the difference between an f and an s.
I have two specific gripes apart from this. One concerns the introduction. We are told how the great Richard Feynman took on someone with an abacus and beat them on the calculation of cube roots because he knew ‘a famous equation from calculus called Taylor’s formula’ – yet we aren’t told what the equation is. In a book that is all about making equations visible, this rankled.
The other problem I have was with a bizarre mini-rant that Mackenzie has about those who worry about the impact of mobile phones on their brains. He points out that the photons produced by a mobile phone have not got enough energy to ionise atoms, so don’t present a danger. But this entirely misses the point. After all, the photons produced by microwave ovens aren’t ionising radiation either, but few us would feel comfortable sticking our heads in a functioning microwave. It’s not that I agree with the ‘danger from phones, phone masts and wifi radiation’ lobby – I don’t – but Mackenzie muddies the water with this strange irrelevancy.
That’s a minor complaint, though. If you’ve always been puzzled by mathematical formulae, or wondered why mathematicians bother to get out of bed in the morning, this book may let you into their secret world. Mackenzie has a light style and is clearly passionate about the subject, though I felt that for the general reader the hook was too weak, leading to a gradual loss of interest. This book would be ideal for a student starting a maths or maths-based degree who wanted some background to help ground the mathematics they will learn in history.
Paperback 
Using these links earns us commission at no cost to you
Review by Brian Clegg

Comments

Popular posts from this blog

Rakhat-Bi Abdyssagin Five Way Interview

Rakhat-Bi Abdyssagin (born in 1999) is a distinguished composer, concert pianist, music theorist and researcher. Three of his piano CDs have been released in Germany. He started his undergraduate degree at the age of 13 in Kazakhstan, and having completed three musical doctorates in prominent Italian music institutions at the age of 20, he has mastered advanced composition techniques. In 2024 he completed a PhD in music at the University of St Andrews / Royal Conservatoire of Scotland (researching timbre-texture co-ordinate in avant- garde music), and was awarded The Silver Medal of The Worshipful Company of Musicians, London. He has held visiting affiliations at the Universities of Oxford, Cambridge and UCL, and has been lecturing and giving talks internationally since the age of 13. His latest book is Quantum Mechanics and Avant Garde Music . What links quantum physics and avant-garde music? The entire book is devoted to this question. To put it briefly, there are many different link...

Should we question science?

I was surprised recently by something Simon Singh put on X about Sabine Hossenfelder. I have huge admiration for Simon, but I also have a lot of respect for Sabine. She has written two excellent books and has been helpful to me with a number of physics queries - she also had a really interesting blog, and has now become particularly successful with her science videos. This is where I'm afraid she lost me as audience, as I find video a very unsatisfactory medium to take in information - but I know it has mass appeal. This meant I was concerned by Simon's tweet (or whatever we are supposed to call posts on X) saying 'The Problem With Sabine Hossenfelder: if you are a fan of SH... then this is worth watching.' He was referencing a video from 'Professor Dave Explains' - I'm not familiar with Professor Dave (aka Dave Farina, who apparently isn't a professor, which is perhaps a bit unfortunate for someone calling out fakes), but his videos are popular and he...

Everything is Predictable - Tom Chivers *****

There's a stereotype of computer users: Mac users are creative and cool, while PC users are businesslike and unimaginative. Less well-known is that the world of statistics has an equivalent division. Bayesians are the Mac users of the stats world, where frequentists are the PC people. This book sets out to show why Bayesians are not just cool, but also mostly right. Tom Chivers does an excellent job of giving us some historical background, then dives into two key aspects of the use of statistics. These are in science, where the standard approach is frequentist and Bayes only creeps into a few specific applications, such as the accuracy of medical tests, and in decision theory where Bayes is dominant. If this all sounds very dry and unexciting, it's quite the reverse. I admit, I love probability and statistics, and I am something of a closet Bayesian*), but Chivers' light and entertaining style means that what could have been the mathematical equivalent of debating angels on...