Skip to main content

The AI Delusion - Gary Smith *****

This is a very important little book ('little' isn't derogatory - it's just quite short and in a small format) - it gets to the heart of the problem with applying artificial intelligence techniques to large amounts of data and thinking that somehow this will result in wisdom.

Gary Smith as an economics professor who teaches statistics, understands numbers and, despite being a self-confessed computer addict, is well aware of the limitations of computer algorithms and big data. What he makes clear here is that we forget at our peril that computers do not understand the data that they process, and as a result are very susceptible to GIGO - garbage in, garbage out. Yet we are increasingly dependent on computer-made decisions coming out of black box algorithms which mine vast quantities of data to find correlations and use these to make predictions. What's wrong with this? We don't know how the algorithms are making their predictions - and the algorithms don't know the difference between correlation and causality.

The scientist's (and statistician's) mantra is often 'correlation is not causality.' What this means is that if we have two things happening in the world we choose to measure - let's call them A (it could be banana imports) and B (it could number of pregnancies in the country) and if B rises and falls as A does, it doesn't mean that B is caused by A. It could be that A is caused B, A and B are both caused by C, or it's just a random coincidence. The banana import/pregnancy correlation actually happened in the UK for a number of years after the second world war. Human statisticians would never think the pregnancies were caused by banana imports - but an algorithm would not know any better.

In the banana case there was probably a C linking the two, but because modern data mining systems handle vast quantities of data and look at hundreds or thousands of variables, it is almost inevitable that they will discover apparent links between two sets of information where the coincidence is totally random. The correlation happens to work for the data being mined, but is totally useless for predicting the future. 

This is the thesis at the heart of this book. Smith makes four major points that really should be drummed into all stock traders, politicians, banks, medics, social media companies... and anyone else who is tempted to think that letting a black box algorithm loose on vast quantities of data will make useful predictions. First, there are patterns in randomness. Given enough values, totally random data will have patterns embedded within it - it's easy to assume that these have a meaning, but they don't. Second, correlation is not causality. Third, cherry picking is dangerous. Often these systems pick the bits of the data that work and ignore the bits that don't - an absolute no-no in proper analysis. And finally, data without theory is treacherous. You need to have a theory and test it against the data - if you try to derive the theory from the data with no oversight, it will always fit that data, but is very unlikely to be correct.

My only problems with book is that Smith insists for some reason on making databases two words ('data bases' - I know, not exactly terrible), and the book can feel a bit repetitious because most of it consists of repeated examples of how the four points above lead AI systems to make terrible predictions - from Hillary Clinton's system mistakenly telling her team where to focus canvassing effort to the stock trading systems produced by 'quants'. But I think that repetition is important here because it shows just how much we are under the sway of these badly thought-out systems - and how much we need to insist that algorithms that affect our lives are transparent and work from knowledge, not through data mining. 

As Smith points out, we regularly hear worries that AI systems are going to get so clever that they will take over the world. But actually the big problem is that our AI systems are anything but intelligent: 'In the age of Big Data, the real danger is not that computers are smarter than us, but that we think computers are smarter than us and therefore trust computers to make important decisions for us.’

This should be big-selling book. A plea to the publisher: change the cover (it just looks like it's badly printed and smudged) and halve the price to give it wider appeal. 

Hardback:  

Kindle:  
Using these links earns us commission at no cost to you

Review by Brian Clegg

Comments

Popular posts from this blog

David Spiegelhalter Five Way interview

Professor Sir David Spiegelhalter FRS OBE is Emeritus Professor of Statistics in the Centre for Mathematical Sciences at the University of Cambridge. He was previously Chair of the Winton Centre for Risk and Evidence Communication and has presented the BBC4 documentaries Tails you Win: the Science of Chance, the award-winning Climate Change by Numbers. His bestselling book, The Art of Statistics , was published in March 2019. He was knighted in 2014 for services to medical statistics, was President of the Royal Statistical Society (2017-2018), and became a Non-Executive Director of the UK Statistics Authority in 2020. His latest book is The Art of Uncertainty . Why probability? because I have been fascinated by the idea of probability, and what it might be, for over 50 years. Why is the ‘P’ word missing from the title? That's a good question.  Partly so as not to make it sound like a technical book, but also because I did not want to give the impression that it was yet another book

The Genetic Book of the Dead: Richard Dawkins ****

When someone came up with the title for this book they were probably thinking deep cultural echoes - I suspect I'm not the only Robert Rankin fan in whom it raised a smile instead, thinking of The Suburban Book of the Dead . That aside, this is a glossy and engaging book showing how physical makeup (phenotype), behaviour and more tell us about the past, with the messenger being (inevitably, this being Richard Dawkins) the genes. Worthy of comment straight away are the illustrations - this is one of the best illustrated science books I've ever come across. Generally illustrations are either an afterthought, or the book is heavily illustrated and the text is really just an accompaniment to the pictures. Here the full colour images tie in directly to the text. They are not asides, but are 'read' with the text by placing them strategically so the picture is directly with the text that refers to it. Many are photographs, though some are effective paintings by Jana Lenzová. T

Everything is Predictable - Tom Chivers *****

There's a stereotype of computer users: Mac users are creative and cool, while PC users are businesslike and unimaginative. Less well-known is that the world of statistics has an equivalent division. Bayesians are the Mac users of the stats world, where frequentists are the PC people. This book sets out to show why Bayesians are not just cool, but also mostly right. Tom Chivers does an excellent job of giving us some historical background, then dives into two key aspects of the use of statistics. These are in science, where the standard approach is frequentist and Bayes only creeps into a few specific applications, such as the accuracy of medical tests, and in decision theory where Bayes is dominant. If this all sounds very dry and unexciting, it's quite the reverse. I admit, I love probability and statistics, and I am something of a closet Bayesian*), but Chivers' light and entertaining style means that what could have been the mathematical equivalent of debating angels on