Skip to main content

Brian Christian and Tom Griffiths - Four Way Interview

Brian Christian is the bestselling author of The Most Human Human, which was named a Wall Street Journal bestseller and a New Yorker favourite book of 2011. His writing has appeared in Wired, The Atlantic, The Wall Street Journal and The Paris Review, among others. Brian has been a featured guest on The Daily Show with Jon Stewart, The Charlie Rose Show, NPR's Radiolab, and the BBC, and has lectured at Google, Microsoft, SETI, the Santa Fe Institute, the Royal Institution of Great Britain, and the London School of Economics.

Tom Griffiths is a professor of psychology and cognitive science at UC Berkeley, where he directs the Computational Cognitive Science Lab. He has received widespread recognition for his scientific work, including awards from the American Psychological Association and the Sloan Foundation.

Algorithms to Live By is reviewed here.

Why science?

BC: I think of my own orientation towards science in essentially religious terms. That anything exists at all (let alone life, let alone my own conscious experience) is wonderfully and sublimely mysterious. The most reverential attitude to adopt toward this grand mystery, in my view, is curiosity. One of the most powerful and profound frameworks we have for expressing that curiosity is science.

TG: When I went to university I deliberately chose not to do science, or at least to do a Bachelor of Arts rather than a Bachelor of Science degree. From my time in school I felt like science was about things that we already understand very well, and I wanted to learn about all the things that are still mysterious — minds, cultures, and thoughts. About half way through my degree I read a philosophy book that had a chapter at the very back about using mathematics to model the mind, and that was it! Suddenly I realized that it was possible to explore those mysterious things using rigorous, quantitative methods, and I was hooked.

Why this book?

BC: Since my teenage years if not even earlier, I have been fascinated by the correspondences and parallels, the homologies and isomorphisms, that exist between formal systems and natural ones. Sometimes drawing on real-world intuition enables us to solve a formal problem; sometimes it goes the other way, and a problem teaches us something that’s more broadly applicable. What we can learn about our own lives from the formal systems we’ve discovered in nature and designed in our own image? Algorithms to Live By explores and pursues this question, using computer science as a way of thinking about human decision-making.

TG: My academic research focuses on developing mathematical models of cognition, drawing on ideas from computer science — artificial intelligence and machine learning — to better understand how human minds work. As a result, I spend a lot of time thinking about the computational structure of everyday life, and out of that comes a vocabulary for describing the decision-making problems people face and a set of strategies for solving them. For me, this book is a way of sharing those insights.

What’s next?

BC: As a lover of both computer science and language, I’ve been fascinated for many years by their intersections in computational linguistics, and I’m excited to work more deeply on some projects at that particular conjunction.

TG: I’m currently working with my students and collaborators on the research questions that relate to topics we discuss in the book, specifically how thinking about human rationality in terms of using efficient algorithms (rather than always producing the right answer, regardless of the effort involved) changes the way we understand human cognition.

What’s exciting you at the moment?

BC: Data visualization. We’re living in an open-data boom, and I see this as the other great literacy, as critical in a civic context as in a scientific one.

TG: The last couple of years have seen significant advances in machine learning and artificial intelligence, and I’m excited about exploring what these advances can tell us about human minds.

Comments

Popular posts from this blog

Ancestral Night (SF) - Elizabeth Bear *****

Only a couple of weeks ago, reviewing a 1960s SF book, I bemoaned the fact that science fiction novels of ideas are less common now. Although it is correctly labelled a space opera, Ancestral Night delivers ideas with aplomb.

Let's deal with the space opera aspect first. Elizabeth Bear provides some excellent adventure scenes in space, and we've the usual mix of huge spaceships and interesting aliens. Main character Haimey Dz is an engineer on a ship that salvages wrecks - but, as we gradually discover - she also has a forgotten past. A major feature of the storyline (one that seems to link to the medieval idea of the lost wisdom of the past) is ancient technology from a long-dead race with capabilities, notably manipulating spacetime mentally (Bear has yet to point out that the travel technologies used here could manipulate time as well as space), which fit well with Arthur C. Clarke's magic definition.

I particularly liked the (surely intentional) nods to the much-misse…

The Creativity Code - Marcus du Sautoy *****

At first glance this might just be another 'What AI is good at and not so good at' title. And in a way, it is. But, wow, what a brilliant book! Marcus du Sautoy takes us on a tour of what artificial intelligence has achieved (and possibly can in the future achieve) in a range of fields from his own of mathematics, through game playing, music, art and more.

After a little discussion of what creativity is, we start off with the now very familiar story of DeepMind's AlphaGo and its astonishing ability to take on the hugely challenging game of Go. Even though I've read about this many times before, du Sautoy, as a Go player and mathematician, gives a real feel for why this was such a triumph - and so shocking. Not surprisingly he is also wonderful on what mathematicians actually do, how computers have helped them to date and how they have the potential to do far more in the future. After all, mathematics is by far the closest science to game playing, as it has strict rule…

The Demon in the Machine - Paul Davies *****

Physicists have a habit of dabbling in biology and, perhaps surprisingly, biologists tend to be quite tolerant of it. (I find it hard to believe the reverse would be true if biologists tried to do physics.) Perhaps one reason for that tolerance is Schrödinger’s lecture series and book What is Life?, which had a huge impact on molecular biology and with a reference to which, not surprisingly, Paul Davies begins his fascinating book. 

At the heart of the The Demon in the Machine (we'll come back to that demon in a moment) is the relationship between life and information. In essence, Davies points out that if we try to reduce life to its simple physical components it is like trying to work with a computer that has no software. The equivalent of software here is information, not just in the best publicised aspect of the information stored in the DNA, but on a far broader scale, operating in networks across the organism.
This information and its processing gives life its emergent compl…