Skip to main content

A World From Dust - Ben McFarland ***

This is, without doubt, one of the strangest popular science books I've ever read. A quote in the blurb says 'this book is very approachable for people with a minimal background in chemistry,' though given the author of this remark is a professor of geobiology, it's tempting to wonder how he knows what would be approachable to such a person. 

Where he's definitely right, though, is when he says 'in ways that have not been attempted by earlier writers on the topic.' I have never before read a science book quite like this. The reason is that you will generally read about physics the way a physicist would look at it, or about biology as understood by a biologist. This reframes all the science it uses as seen by a chemist. The result is novel, certainly, though I'm not convinced it makes the subjects more approachable - instead, for me, it obscures the message.

In Ben McFarland's obsessive attempt to represent any science from a chemistry viewpoint, what he writes can sometimes be confusing. At times, it even sounds worryingly like the way pseudoscience uses scientific terminology e.g. 'Energy rate density (ERD) is the ratio of watts to kilograms. As such, the ERD for a system measures the river of energy that is spread out as it flows through a system. If the river flows more quickly and more energy is processed, then the ERD increases, too.' 

Having said all that, there is some interesting material in the book. McFarland challenges the great biologist and science communicator Steven J. Gould, who suggested that if you rewound the 'tape of life' and played it again, things would have turned out to be very different. According to McFarland, everything is so limited by chemistry, that the new history of life would seem extremely familiar. That's fair enough, though I think McFarland exaggerates Gould's point to be able to challenge it, which he does repeatedly. I don't think Gould was really suggesting that another run of the development of life would produced silicon-based lifeforms using arsenic where we would use phosphorus. Rather, Gould was suggesting that within a very basic related framework, many of the outcomes were dictated by chance in a hugely complex (and indeed chaotic) system, meaning that the results would be likely to be significantly different to lifeforms we see today.

However, if you overlook McFarland's obsession with proving Gould wrong, his exploration of how very few elements could play the part they do in living creatures is genuinely absorbing, especially where he demonstrates the importance of size, charge and bond strengths as determiners of the possible outcomes. Much of the book focuses on how life might have developed, seen from his unique chemist's viewpoint. This isn't the best book to get a feel for the nature of biological life and the complexity that is involved - a far better read on that subject is Nick Lane's The Vital Question. Yet it's impossible to deny that McFarland's unique way of looking at things gives new insights to the reader on the topic established in the subtitle: how the periodic table shaped life.

I personally found the approach and style irritating (and struggled with most of the fuzzy illustrations). But the book may well work for other readers, especially if they have a chemistry background. And this is a a true, brave attempt to be different in approach to popular science writing, which must be applauded.


Hardback 

Kindle 
Using these links earns us commission at no cost to you
Review by Brian Clegg


Comments

Popular posts from this blog

Philip Ball - How Life Works Interview

Philip Ball is one of the most versatile science writers operating today, covering topics from colour and music to modern myths and the new biology. He is also a broadcaster, and was an editor at Nature for more than twenty years. He writes regularly in the scientific and popular media and has written many books on the interactions of the sciences, the arts, and wider culture, including Bright Earth: The Invention of Colour, The Music Instinct, and Curiosity: How Science Became Interested in Everything. His book Critical Mass won the 2005 Aventis Prize for Science Books. Ball is also a presenter of Science Stories, the BBC Radio 4 series on the history of science. He trained as a chemist at the University of Oxford and as a physicist at the University of Bristol. He is also the author of The Modern Myths. He lives in London. His latest title is How Life Works . Your book is about the ’new biology’ - how new is ’new’? Great question – because there might be some dispute about that! Many

The Naked Sun (SF) - Isaac Asimov ****

In my read through of all six of Isaac Asimov's robot books, I'm on the fourth, from 1956 - the second novel featuring New York detective Elijah Baley. Again I'm struck by how much better his book writing is than that in the early robot stories. Here, Baley, who has spent his life in the confines of the walled-in city is sent to the Spacer planet of Solaria to deal with a murder, on a mission with political overtones. Asimov gives us a really interesting alternative future society where a whole planet is divided between just 20,000 people, living in vast palace-like structures, supported by hundreds of robots each.  The only in-person contact between them is with a spouse (and only to get the distasteful matter of children out of the way) or a doctor. Otherwise all contact is by remote viewing. This society is nicely thought through - while in practice it's hard to imagine humans getting to the stage of finding personal contact with others disgusting, it's an intere

The Blind Spot - Adam Frank, Marcelo Gleiser and Evan Thompson ****

This is a curate's egg - sections are gripping, others rather dull. Overall the writing could be better... but the central message is fascinating and the book gets four stars despite everything because of this. That central message is that, as the subtitle says, science can't ignore human experience. This is not a cry for 'my truth'. The concept comes from scientists and philosophers of science. Instead it refers to the way that it is very easy to make a handful of mistakes about what we are doing with science, as a result of which most people (including many scientists) totally misunderstand the process and the implications. At the heart of this is confusing mathematical models with reality. It's all too easy when a mathematical model matches observation well to think of that model and its related concepts as factual. What the authors describe as 'the blind spot' is a combination of a number of such errors. These include what the authors call 'the bifur