Skip to main content

I, Superorganism - Jon Turney ****

I need to say straight away that I like this book, as my first comment otherwise would be a complaint. Because I don't like the title. For me, a superorganism is something very specific. It's a collection of individual organisms that come together to act as a single being. None typically has the full range of functionality and none seeks its own benefit. Instead they act more like the cells of a body. This kind of lifeform sounds like an alien in a sci-fi movie. But bees, ants and termites are all such superorganisms. Humans aren't. 

I'm not saying humans aren't amazing, with lots of parasitism and symbiotic action going on with all the many non-human inhabitants of the body, but we aren't real superorganisms. Jon Turney does make a quick reference right at the end of his book to this 'other' use of the term, but for me that is the definitive use - so for this phenomenon they should choose a new term like metaorganism or hyperorganism. I don't care, just hands off the bees.

With that moan over, this is a very important book because it covers a phenomenal topic, which practically no one knows much about, and Turney does the best possible job in covering it. As the book's subtitle suggests it's about 'learning to love your inner ecosystem' - or probably more accurately, becoming more aware of just how amazing the colony of bacteria (etc.) that co-occupies your body is, where it comes from, and all the remarkable things it does in terms of your body's everyday working.

When I wrote The Universe Inside You, it was amazing enough to be able to say that we have around ten times as many bacterial cells as human in our bodies - but these figures are relatively dated, it seems. It's not so much that we have a better feel for the numbers, but rather a better feel for how little we really know. Whatever the actual figure, there are certainly far more bacterial cells in us than our own, and they occur pretty well everywhere, even in areas like the surface of the eye that were once thought to be sterile. (Part of the problem with pinning down bacteria is that they don't all flourish in a petri dish, so before DNA sequencing it was hard to be sure what was present, and even now it's all decidedly vague.)

Among the revelations are that our systems are built around supporting bacteria far more than we once thought. For instance, a major part of our very sophisticated and complex immune system seems to have been developed not to protect us, but to protect all the useful bacteria that inhabit our cracks, crevices and innards. And then there's the sheer diversity - because different individuals can have almost entirely different proportions of onboard flora and fauna - in fact each of us can be as different as different continents. Which all means that even though our DNA sequencing techniques are hugely improved, and can now routinely make deductions from a whole mess of DNA, rather than that of an isolated bacterium, we are largely in the dark about the whys and wherefores of any particular human ecosystem.

Which leads me on to the negative side. Quite a lot of the book is, well, dull. This might seem a contradiction to my earlier comment about Turney doing the best possible job in covering it - but the point is that the subject itself manages to be hugely important... and boring, all at the same time. Part of the problem is the Rutherford effect. The great physicist Ernest Rutherford famously (and very effectively) wound up by biologists by saying 'all science is either physics or stamp collecting,' meaning that biologists, and to some extend chemists, spend most of their time collecting information, cataloguing it and structuring it, rather than developing any fundamental underlying science. And while biology now has its mega-theories, this study of these bacterial colonies and their interaction with their human host is very much in the stamp collecting phase, even if it's done with brand new, high-tech approaches.

So we get page after page that is telling us about the type of bacteria that may (or may not) be found in different parts of the body and the chemical systems they use to interact and the molecular... zzzz. Of course I may be biased, having a physics background, but I've read and enjoyed plenty of popular biology books. I like this one, I find the underlying 'wow factor' of the sheer scale and importance of our associated bacteria amazing, but the detail is rather tedious. 

I also didn't get an answer to the question that was at the back of my mind, raising a hand for attention, all the way through. What do the different antibiotics we get given do to our bacterial landscape, and what does this mean for its recovery afterwards? There is a specific section about the impact of antibiotics on young children, but no insights into the specific action of, say, amoxycillin on our gut bacteria. (And someone should have spotted the howler where a paper is quoted as saying as a sample was 'placed in a cooler and... stored at 280°C until DNA extraction.' That's not storage, that's cooking. It should have read -80°C.)

Given that, what should I conclude? I think even if you end up, like me, skipping through a few pages where things look to be carrying on in the same fashion, it is still a really important milestone in our understanding of the complexity and variability of our inner landscape, and as such is a must-have addition to the popular science bookshelf.


Paperback 

Kindle 
Using these links earns us commission at no cost to you
Review by Brian Clegg

Comments

  1. Looks like a book to look forward. I always look for books which expand mind horizon. Thanks for the recommendation

    ReplyDelete

Post a Comment

Popular posts from this blog

David Spiegelhalter Five Way interview

Professor Sir David Spiegelhalter FRS OBE is Emeritus Professor of Statistics in the Centre for Mathematical Sciences at the University of Cambridge. He was previously Chair of the Winton Centre for Risk and Evidence Communication and has presented the BBC4 documentaries Tails you Win: the Science of Chance, the award-winning Climate Change by Numbers. His bestselling book, The Art of Statistics , was published in March 2019. He was knighted in 2014 for services to medical statistics, was President of the Royal Statistical Society (2017-2018), and became a Non-Executive Director of the UK Statistics Authority in 2020. His latest book is The Art of Uncertainty . Why probability? because I have been fascinated by the idea of probability, and what it might be, for over 50 years. Why is the ‘P’ word missing from the title? That's a good question.  Partly so as not to make it sound like a technical book, but also because I did not want to give the impression that it was yet another book

Vector - Robyn Arianrhod ****

This is a remarkable book for the right audience (more on that in a moment), but one that's hard to classify. It's part history of science/maths, part popular maths and even has a smidgen of textbook about it, as it has more full-on mathematical content that a typical title for the general public usually has. What Robyn Arianrhod does in painstaking detail is to record the development of the concept of vectors, vector calculus and their big cousin tensors. These are mathematical tools that would become crucial for physics, not to mention more recently, for example, in the more exotic aspects of computing. Let's get the audience thing out of the way. Early on in the book we get a sentence beginning ‘You likely first learned integral calculus by…’ The assumption is very much that the reader already knows the basics of maths at least to A-level (level to start an undergraduate degree in a 'hard' science or maths) and has no problem with practical use of calculus. Altho

Everything is Predictable - Tom Chivers *****

There's a stereotype of computer users: Mac users are creative and cool, while PC users are businesslike and unimaginative. Less well-known is that the world of statistics has an equivalent division. Bayesians are the Mac users of the stats world, where frequentists are the PC people. This book sets out to show why Bayesians are not just cool, but also mostly right. Tom Chivers does an excellent job of giving us some historical background, then dives into two key aspects of the use of statistics. These are in science, where the standard approach is frequentist and Bayes only creeps into a few specific applications, such as the accuracy of medical tests, and in decision theory where Bayes is dominant. If this all sounds very dry and unexciting, it's quite the reverse. I admit, I love probability and statistics, and I am something of a closet Bayesian*), but Chivers' light and entertaining style means that what could have been the mathematical equivalent of debating angels on