Skip to main content

Two weird quantum concepts

Quantum physics is famous for its strangeness. As the great Richard Feynman once said about the part of quantum theory that deals with the interactions of light and matter particles, quantum electrodynamics:
I’m going to describe to you how Nature is – and if you don’t like it, that’s going to get in the way of your understanding it… The theory of quantum electrodynamics describes Nature as absurd from the point of view of common sense. And it agrees fully with experiment. So I hope you can accept Nature as she is – absurd.
It's interesting to compare two of the strangest concepts to be associated with quantum physics - Dirac's negative energy sea and the 'many worlds' interpretation. Each strains our acceptance, but both have had their ardent supporters.

Dirac's 'sea' emerges from his equation which describes the behaviour of the electron as a quantum particle that is subject to relativistic effects. The English physicist Paul Dirac discovered that his equation, which fits experimental observation beautifully, could not hold without one really weird implication. We are used to electrons occupying different quantised energy levels. This is bread and butter quantum theory. But all those levels are positive. Dirac's equation required there also to be a matching set of negative energy levels.

This caused confusion, doubt and in some cases rage. Such levels had never been observed. And if they were there, you would expect electrons to plunge down into them, emitting radiation as they went. Nothing would be stable. As a mind-boggling patch, Dirac suggested that while these levels existed, they were already full of electrons. So every electron we observe would be supported by an infinite tower of electrons, all combining to fill space with his 'Dirac sea'.

As you might expect, a good number of physicists were not impressed by this concept. But Dirac stuck with it and examined the implications. Sometimes you would expect that an electron in the sea would absorb energy and jump to a higher, positive level - leaving behind a hole in the negative energy sea. Dirac reasoned that such an absence of a negatively charged, negative energy electron would be the same as the presence of a positively charged, positive energy anti-electron. If his sea existed, there should be some anti-electrons out there, which would be able to combine with a conventional electron - as the electron filled the hole - giving off a zap of energy as photons.

It took quite a while, but in the early cloud chambers that were used to study cosmic rays it was discovered that a particle sometimes formed that seemed identical to an electron, except for having a positive charge - the positron, or anti-electron.

Weird though it was, Dirac's concept was able to predict a detectable outcome and moved forward our understanding of physics. As it happens, with time it proved possible to formulate quantum field theory in such a way that the positron was a true particle and the need for the sea was removed, although it remains as an alternative way of thinking about electrons that has proved useful in solid state electronics.

The 'many worlds' hypothesis originated in the late 1950s from the American physicist Hugh Everett. Its aim is to avoid the difficulty we have of the difference between the probabilistic quantum world and the 'real' things we see around us, which seem not to have the same flighty behaviour. Everett didn't like the then dominant 'Copenhagen interpretation' (variants of which are still relatively common) which said that a quantum particle would cease behaving in a weird quantum fashion and 'collapse' to having a particular value when it was 'observed'. This concept gave a lot of physicists problems, especially when it was assumed that this 'observation' had to be by a conscious being, rather than simply an interaction with other particles.

Like the Dirac sea, 'many worlds' patches up a problem with a drastic-sounding solution. In 'many worlds', the system being observed and the observer are considered as a whole. After an event that the Copenhagen interpretation would regard as a collapse, 'many worlds' effectively has a universe that combines both possible states, each with its own version of the observer. So, in effect, the process means that the universe doubles in complexity each time such a quantum event occurs, becoming a massively complex tree of possibilities.

Some physicists like the lack of a need for anything like the odd 'collapse' and the distinction between  small scale and large - others find the whole thing baroque in its complexity. What would help is if 'many worlds' could come up with its equivalent of antimatter - a prediction of something that emerges from it but not from other interpretations that can be measured and detected. As yet this is to happen. Whether or not you accept 'many worlds', it is certainly a remarkable example of the kind of thinking needed to get your head around quantum physics.

Find out more about Dirac, his equation and the quantum sea in The Strangest Man by Graham Farmelo.

Find out more about the latest thinking on 'many worlds' in Our Mathematical Universe by Max Tegmark.

Comments

Popular posts from this blog

The Antigravity Enigma - Andrew May ****

Antigravity - the ability to overcome the pull of gravity - has been a fantasy for thousands of years and subject to more scientific (if impractical) fictional representation since H. G. Wells came up with cavorite in The First Men in the Moon . But is it plausible scientifically?  Andrew May does a good job of pulling together three ways of looking at our love affair with antigravity (and the related concept of cancelling inertia) - in science fiction, in physics and in pseudoscience and crankery. As May points out, science fiction is an important starting point as the concept was deployed there well before we had a good enough understanding of gravity to make any sensible scientific stabs at the idea (even though, for instance, Michael Faraday did unsuccessfully experiment with a possible interaction between gravity and electromagnetism). We then get onto the science itself, noting the potential impact on any ideas of antigravity that come from the move from a Newtonian view of a...

The World as We Know It - Peter Dear ***

History professor Peter Dear gives us a detailed and reasoned coverage of the development of science as a concept from its origins as natural philosophy, covering the years from the eighteenth to the twentieth century. inclusive If that sounds a little dry, frankly, it is. But if you don't mind a very academic approach, it is certainly interesting. Obviously a major theme running through is the move from largely gentleman natural philosophers (with both implications of that word 'gentleman') to professional academic scientists. What started with clubs for relatively well off men with an interest, when universities did not stray far beyond what was included in mathematics (astronomy, for instance), would become a very different beast. The main scientific subjects that Dear covers are physics and biology - we get, for instance, a lot on the gradual move away from a purely mechanical views of physics - the reason Newton's 'action at a distance' gravity caused such ...

It's On You - Nick Chater and George Loewenstein *****

Going on the cover you might think this was a political polemic - and admittedly there's an element of that - but the reason it's so good is quite different. It shows how behavioural economics and social psychology have led us astray by putting the focus way too much on individuals. A particular target is the concept of nudges which (as described in Brainjacking ) have been hugely over-rated. But overall the key problem ties to another psychological concept: framing. Huge kudos to both Nick Chater and George Loewenstein - a behavioural scientist and an economics and psychology professor - for having the guts to take on the flaws in their own earlier work and that of colleagues, because they make clear just how limited and potentially dangerous is the belief that individuals changing their behaviour can solve large-scale problems. The main thesis of the book is that there are two ways to approach the major problems we face - an 'i-frame' where we focus on the individual ...