Skip to main content

The Sun is Dying and Global Dimming – Brian Cox

Two mini-features from the CERN physicist, media star and scientific advisor to the movie Sunshine.
The Sun is Dying
The Sun will not live forever. It has enough fuel left, if our current understanding is correct, for another 5 billion years, at which point it will die. But could it be possible for the Sun to die much sooner, within the next 100 years even? From a scientific perspective, it should be said that this is very unlikely. But, it is also true that there is a lot about the universe that we do not understand.
Over the last few years astronomers have observed that there is extra “stuff” in the universe that we can see only by its gravitational influence on stars and galaxies. This stuff goes by the name of Dark Matter, and there is five times as much Dark Matter in the universe as there is normal matter, the stuff that makes up you, me, and the stars and planets we can see with our telescopes. What is this mysterious stuff? It’s possible, some scientists would say likely even, that this stuff is made of particles known as supersymmetric particles, a new and exotic form of matter that is high on the list of potential discoveries at CERN’s giant Large Hadron Collider, a 27km in circumference machine which begins operations this year after almost a decade of construction.
Theoretical physicists have spent many years calculating the properties of these supersymmetric particles, and we have a reasonable theoretical understanding of how they might behave. One possibility is that they could clump together into giant balls known as Q-balls. If this is true, then these heavy and exotic objects could have been made billionths of a second after our Universe began, and still be roaming the Universe today. It is speculated that, if a Q-ball drifts into the heart of a super-dense object such as a neutron star, it could begin to eat away at it’s core like a cancer, until the star is no longer massive enough to maintain itself and explodes in a violent explosion. Such explosions, known as gamma ray bursts, are seen in the Universe, although their cause is as yet unknown.
Could such a dangerous, exotic object drift into the Sun’s core and cause it to stop shining? It is likely that the Sun is many times too diffuse to stop a Q-ball – it would power right through. But maybe, just maybe, some strange exotic form of matter from the earliest times in the universe could settle deep within the Sun’s core, and disrupt its function enough to cause the catastrophic scenario seen in Sunshine. It’s far-fetched, but we have a saying in physics that anything that isn’t explicitly ruled out is therefore possible, so in the final analysis, you never quite know.
Global Dimming
It is now suspected that pollution in the Earth’s atmosphere, caused by industrialization and natural phenomena such as volcanic eruptions, may have significantly reduced that amount of sunlight reaching the Earth’s surface. It is estimated that this could have led to a cooling effect of over 1 degree overt he last 40 years, which would go some way to offsetting the effect of global warming. Global warming is caused primarily by increasing carbon dioxide levels in the atmosphere that prevent heat being radiated back out into space from the Earth’s surface.
The phenomenon of global dimming may therefore have saved us, so far, from the worst affects of climate change, although it has been noticed that as pollution levels have been reduced, particularly in Western Europe, the affects of global dimming seem to be reducing, leading to an accelerating temperature rise once again. We may therefore be in the paradoxical situation that reducing pollution might INCREASE the effects of global warming, leading us ever more quickly towards catastrophe.
This discovery isn’t all bad, however, because it may suggest a short term solution to climate change. Why not intentionally put pollutants, which may be designed to be benign in other respects, into the atmosphere to accelerate global dimming, and therefore slow the climate change caused by carbon dioxide emissions. Several suggestions along these lines have been made, including adding small particles to airplane fuel, and therefore using one of the main contributors to climate change, aircraft, to slow its effects. It’s an intriguing possibility, and one that is the focus of significant research, although it should be said that we cannot at present predict the effects of such fine-tuning of the climate, so global dimming shouldn’t be seen as a means to allow us to continue to increase carbon dioxide emissions.
Brian Cox is science advisor to the movie Sunshine – see www.sunshinemovie.co.uk

Comments

Popular posts from this blog

Sticky - Laurie Winkless *****

There has been a suggestion doing the rounds that if you don't get into a book after the first few pages, you should give it up - because life's too short. If I'd followed this suggestion, I wouldn't have discovered what a brilliant book Sticky is. I'll get back to that, but it's worth saying first why Laurie Winkless's book on what makes things sticky, produces friction and grip - or for that matter lubricates - is so good. Without doubt, Winkless is great at bringing storytelling to her writing. She frames her information well with interviews, visits to places and her personal experiences. But of itself, that isn't enough. The reason, for example, I was captivated by her section on the remarkable (though oddly, given the book's title, entirely non-sticky) adhesive qualities of the gecko's foot was really about the way that Winkless takes us through the different viewpoints on how the foot's adhesion works. We get plenty of science and also

The Car That Knew Too Much - Jean-François Bonnefon ****

This slim book is unusual in taking us through the story of a single scientific study - and it's very informative in the way that it does it. The book makes slightly strange reading, as I was one of the participants in the study - but that's not surprising. According to Jean-François Bonnefon, by the time the book was published, around 100 million people worldwide had taken part in the Moral Machine experiment. The idea behind the study was to see how the public felt self-driving cars should make what are effectively moral decisions. Specifically, in a dilemma where there was a choice to be made between, say, killing one or other person or groups of people, how should the car decide? As a concept, Bonnefon makes it clear this is a descendent of the classic 'trolley' problem where participants are asked to decide, for example, whether or not to switch the points so a tram that is currently going to kill five people will be switched to a track where it will kill one perso

Laurie Winkless - Four Way Interview

Laurie Winkless ( @laurie_winkless ) is an Irish physicist and author. After a physics degree and a masters in space science, she joined the UK’s National Physical Laboratory as a research scientist, specialising in functional materials. Now based in New Zealand, Laurie has been communicating science to the public for 15 years. Since leaving the lab, she has worked with scientific institutes, engineering companies, universities, and astronauts, amongst others. Her writing has featured in outlets including Forbes, Wired, and Esquire, and she appeared in The Times magazine as a leading light in STEM. Laurie’s first book was Science and the City , and her new title is Sticky , also published by Bloomsbury. Why science? I was a very curious kid: always asking questions about how things worked. I suspect I drove my parents mad, but they never showed it. Instead, they encouraged me to explore those questions. From taking me to the library every week, to teaching me how to use different tools