Skip to main content

Dana Mackenzie – Four Way Interview

Dana Mackenzie is the author of The Big Splat, or How Our Moon Came to Be (Wiley), among other books. He is a frequent contributor to Science, Discover, and New Scientist. He has a PhD in mathematics from Princeton and was a mathematics professor for thirteen years before becoming a full time writer. His latest book is The Universe in Zero Words.
Why maths?
To me, mathematics is the most universal language. It is a subject with a continuous unbroken tradition from the ancient Chinese, Babylonians, and Egyptians to the present day – a longer tradition than any other science and virtually any other human endeavor. It is an enabling subject, in the sense that every other science depends on it to some extent, and generally speaking the more modern a science becomes, the more explicitly it incorporates mathematical reasoning and ideas.
Most importantly and most personally for me, I love mathematics because there is no other field I know of where truth and beauty are so closely intertwined. They are related in the other sciences as well, but I still feel feel that scientific truths are to some extent contingent and occasionally a result of happenstance. Our knowledge is based upon imperfect data and our imperfect interpretations thereof. In
mathematics, by contrast, nothing is ever true by accident. A mathematical theorem, once proven correctly, can never be falsified. (It can only become irrelevant, and even then it often returns to relevance when you least expect it.) The best theorems, and the best proofs, are almost always the ones with the greatest beauty and economy of ideas.
Why this book?
My purpose in writing this book is to demystify mathematics, and in particular to demystify equations.
For many people, an equation is a forbidding and scary thing. It looks like some kind of mystical incantation filled with secrets they are not privy to. And yet for scientists, and especially for mathematicians, it is exactly the opposite. Words are too imprecise and clumsy to express the fine details of a mathematical idea; an equation is often the only way to do it. This is why I called the book The Universe in Zero Words - because by opening yourself up to equations (which typically have zero words), you open yourself to seeing the universe more clearly.
To compare words to equations, imagine comparing a painting of Earth to a Google map. No matter how well executed, the painting is rough and inaccurate. When you zoom in on it, you don’t see any new geographic details. By contrast, the farther you zoom into a Google map, the more interesting details you see. It is the same way with an equation. This book is an attempt to help the reader through that process, to see the “Google Maps” version of mathematics rather than the caricature version that popular culture presents us.
I also wrote this book because I wanted to write a mathematics book! My first book (The Big Splat, or How Our Moon Came to Be) was about a subject that I had no special training in when I began the project. It was a great way to exercise and develop my journalistic muscles. For my second book, I wanted to write about something that I already knew a lot about. This allowed me to write from a much more personal point of view, rather than the dispassionate view of the journalist or historian.
What’s next?
In the short term, I am continuing to write a series of booklets for the American Mathematical Society called What’s Happening in the Mathematical Sciences. The next one in the series, volume 9, should come out early next year, and I am very busy with that and hoping that I can meet my deadline.
In the long term, I expect that at some point I will get to work on another trade book. I love writing the “What’s Happening” series, but I have to admit that it reaches a rather narrow audience. At this point I can only describe the broadest features of what I am looking for in my next mass market book. Having written one book “far from home” (about planetary science) and one “close to home” (about mathematics) I will probably venture “farther from home” again. But I may change that plan if The Universe in Zero Words is a big success, and if there seems to be a big demand for another mathematical book from me. I would also be interested in writing a book that takes place over a shorter time frame, because both of my previous books covered nearly the whole period of recorded history. There is something to be said for the classical unities of time, space, and action (although I would not interpret themtoo literally).
What’s exciting you at the moment?
Mostly the things I have written about most recently and the things I am writing about right now. That would include an article I wrote for Science magazine about robotic flapping birds, and a chapter I wrote for What’s Happening in the Mathematical Sciences about mathematical algorithms to solve Rubik’s cube. An interesting thing that they had in common was that for the first time I found myself using YouTube as a research tool! There is an absolutely amazing video on YouTube of one of the new robotic birds, designed by a German company called Festo, flying over the audience at a TED conference in Edinburgh. You should look it up if you haven’t seen it. And there are many, many amazing videos on YouTube of “speedcubers” — people who solve Rubik’s cube as quickly as possible. Some use their hands, some use their feet, some do it blindfolded! The current world record for solving Rubik’s cube (by a human) is 5.66 seconds. I don’t know about you, but I can’t even unlock the door to my house in 5.66 seconds!

Comments

Popular posts from this blog

Roger Highfield - Stephen Hawking: genius at work interview

Roger Highfield OBE is the Science Director of the Science Museum Group. Roger has visiting professorships at the Department of Chemistry, UCL, and at the Dunn School, University of Oxford, is a Fellow of the Academy of Medical Sciences, and a member of the Medical Research Council and Longitude Committee. He has written or co-authored ten popular science books, including two bestsellers. His latest title is Stephen Hawking: genius at work . Why science? There are three answers to this question, depending on context: Apollo; Prime Minister Margaret Thatcher, along with the world’s worst nuclear accident at Chernobyl; and, finally, Nullius in verba . Growing up I enjoyed the sciencey side of TV programmes like Thunderbirds and The Avengers but became completely besotted when, in short trousers, I gazed up at the moon knowing that two astronauts had paid it a visit. As the Apollo programme unfolded, I became utterly obsessed. Today, more than half a century later, the moon landings are

Space Oddities - Harry Cliff *****

In this delightfully readable book, Harry Cliff takes us into the anomalies that are starting to make areas of physics seems to be nearing a paradigm shift, just as occurred in the past with relativity and quantum theory. We start with, we are introduced to some past anomalies linked to changes in viewpoint, such as the precession of Mercury (explained by general relativity, though originally blamed on an undiscovered planet near the Sun), and then move on to a few examples of apparent discoveries being wrong: the BICEP2 evidence for inflation (where the result was caused by dust, not the polarisation being studied),  the disappearance of an interesting blip in LHC results, and an apparent mistake in the manipulation of numbers that resulted in alleged discovery of dark matter particles. These are used to explain how statistics plays a part, and the significance of sigmas . We go on to explore a range of anomalies in particle physics and cosmology that may indicate either a breakdown i

Splinters of Infinity - Mark Wolverton ****

Many of us who read popular science regularly will be aware of the 'great debate' between American astronomers Harlow Shapley and Heber Curtis in 1920 over whether the universe was a single galaxy or many. Less familiar is the clash in the 1930s between American Nobel Prize winners Robert Millikan and Arthur Compton over the nature of cosmic rays. This not a book about the nature of cosmic rays as we now understand them, but rather explores this confrontation between heavyweight scientists. Millikan was the first in the fray, and often wrongly named in the press as discoverer of cosmic rays. He believed that this high energy radiation from above was made up of photons that ionised atoms in the atmosphere. One of the reasons he was determined that they should be photons was that this fitted with his thesis that the universe was in a constant state of creation: these photons, he thought, were produced in the birth of new atoms. This view seems to have been primarily driven by re