Skip to main content

17 Equations that Changed the World [In Pursuit of the Unknown] – Ian Stewart ***

There’s been a trend for a couple of years in popular science to produce ‘n greatest ideas’ type books, the written equivalent of those interminable ’50 best musicals’ or ‘100 favourite comedy moments’ or whatever shows that certain TV companies churn out. Now it has come to popular maths in the form of Ian Stewart’s 17 Equations that Changed the World.
Stewart is a prolific writer – according to the accompanying bumf he has authored more than 80 books, which is quite an oeuvre. That can’t be bad. He is also a professional mathematician – a maths professor – and that potentially is a problem. The trouble is that, much more so than science, mathematicians are not ordinary people. They get excited about things that really don’t get other people thrilled. And it takes an exceptional mathematician to be able to communicate that enthusiasm without boring the pants off you. It’s notable that the most successful maths populariser ever, Martin Gardner, wasn’t a mathematician.
So how does Ian Stewart do here? Middling well, I’d say. The equations he provides us with are wonderful, fundamental ones that even someone with an interest in science alone, who only sees maths as a means to an end, can see are fascinating. In most cases he throws in quite a lot of back story, historical context to get us interested. So the meat of the book is excellent. But all too often there comes a point in trying to explain the actual equation where he either loses the reader because he is simplifying something to the extent that the explanation isn’t an explanation, or because it’s hard to get excited about it, unless you are a mathematician.
The section on the Schrodinger equation, for example, is presented in such a way that it’s almost impossible to understand what he’s on about, throwing around terms like the Hamiltonian and eigenfunctions without ever giving enough information to follow the description of what is happening. (I also always get really irritated with knot theory, as the first thing mathematicians do is say ‘Let’s join the ends up.’ No, that’s not a knot any more, it’s a twisted or tangled loop. A knot has to be in a piece of string (or rope, or whatever) with free ends.)
Inevitably, to give the book real world interest, many of the equations are from science, and Stewart proves, if anything, better at getting across the science than he is the maths (probably because it is easier to grasp the point). The only section I’d argue a little with is the one on entropy, where he repeatedly says that entropy always increases or stays the same, where it’s more accurate to say that statistically it is very, very likely to do so. But there is always a small chance that purely randomly, say a mixture of gas molecules will partly unmix. (He also uses an unnecessarily complex argument to put down the creationist argument that uses entropy to argue for divine intervention, as it’s easiest to explain that you aren’t dealing with a closed system, something he doesn’t cover.)
Overall, then, I am not sure who will benefit from this book. There’s not enough detail to interest people studying maths or physics at university, but it becomes too obscure in a number of places for the general reader. A good attempt, but would have benefited from having a co-author who isn’t a mathematician and who could say ‘Sorry, Ian, I don’t get that. Let’s do it differently.’ Bring back Simplicio. (One for the Galileo fans.)

Paperback 

Kindle 
Using these links earns us commission at no cost to you
Review by Brian Clegg

Comments

  1. When I bought a second hand copy the first section I read was a formula not an equation. My first thought was that the formula looked wrong and it was - the standard deviation was inside a square root. Re-prints also reprint this error and the publisher didn't acknowledge my e-mail. Perhaps too embarrassed?

    ReplyDelete

Post a Comment

Popular posts from this blog

God: the Science, the Evidence - Michel-Yves Bolloré and Olivier Bonnassies ***

This is, to say the least, an oddity, but a fascinating one. A translation of a French bestseller, it aims to put forward an examination of the scientific evidence for the existence of a deity… and various other things, as this is a very oddly structured book (more on that in a moment). In The God Delusion , Richard Dawkins suggested that we should treat the existence of God as a scientific claim, which is exactly what the authors do reasonably well in the main part of the book. They argue that three pieces of scientific evidence in particular are supportive of the existence of a (generic) creator of the universe. These are that the universe had a beginning, the fine tuning of natural constants and the unlikeliness of life.  To support their evidence, Bolloré and Bonnassies give a reasonable introduction to thermodynamics and cosmology. They suggest that the expected heat death of the universe implies a beginning (for good thermodynamic reasons), and rightly give the impression tha...

Humble Pi - Matt Parker ****

Matt Parker had me thoroughly enjoying this collection of situations where maths and numbers go wrong in everyday life. I think the book's title is a little weak - 'Humble Pi' doesn't really convey what it's about, but that subtitle 'a comedy of maths errors' is far more informative. With his delightful conversational style, honed in his stand-up maths shows, it feels as if Parker is a friend down the pub, relating the story of some technical disaster driven by maths and computing, or regaling us with a numerical cock-up. These range from the spectacular - wobbling and collapsing bridges, for example - to the small but beautifully formed, such as Excel's rounding errors. Sometimes it's Parker's little asides that are particularly attractive. I loved his rant on why phone numbers aren't numbers at all (would it be meaningful for someone to ask you what half your phone number is?). We discover the trials and tribulations of getting cal...

Quantum 2.0 - Paul Davies ****

Unlike the general theory of relativity or cosmology, quantum physics is an aspect of physics that has had a huge impact on everyday lives, particularly through the deployment of electronics, but also, for example, where superconductivity has led to practical applications. But when Paul Davies is talking about version 2.0, he is specifically describing quantum information, where quantum particles and systems are used in information technology. This obviously includes quantum computers, but Davies also brings in, for example, the potential for quantum AI technology. Quantum computers have been discussed for decades - algorithms had already been written for them as early as the 1990s - but it's only now that they are starting to become usable devices, not at the personal level but in servers. In his usual approachable style, Davies gives us four chapters bringing us up to speed on quantum basics, but then brings in quantum computing. After this we don't get solid quantum informat...