Skip to main content

The Science Delusion – Rupert Sheldrake ***

Half of what’s in this quite chunky tome is excellent – the trouble is that I suspect the other bits, which aren’t so good, will put off those that really should be reading it.
The fundamental message Rupert Sheldrake is trying to get across is that science typically operates in a very blinkered, limited way. And he’s right. He shows very convincingly the way that time and again scientists refuse to look at anything outside of a very limited set of possibilities, not because there is good evidence that these particular avenues should be ignored, but simply because of kneejerk reactions and belief systems.
Of course science can’t examine every silly idea, fruitcake theory and dead-end observation, but the closed-mindedness of many scientists is quite extraordinary, and certainly not scientific. And in bringing this out, Sheldrake has a lot to offer in this book. He examines a whole range of assumptions that are generally made in science and never questioned – and this is a brilliant thing. We’re talking basic things like universal constants staying constant, energy being conserved, whether consciousness is purely a product of the matter in the brain and so on. I’m not saying these are assumptions are necessarily wrong, but it’s too easy to get into the habit of thinking that they shouldn’t be questioned. We quickly forget that they are assumptions.
Sheldrake also shows powerfully how some professional skeptics simply have no interest in looking into claims for anything outside of our current scientific understanding (telepathy, for example). He cites a wonderful example where he was brought into a TV programme with Richard Dawkins. He did this on the assurance that this would would involve the discussion of the evidence for and against telepathy. ‘I suggested that we actually discuss the evidence,’ says Sheldrake. ‘[Dawkins] looked uneasy and said “I don’t want to discuss evidence.”… The director confirmed that he too was not interested in evidence.’ Debunking without evidence isn’t science, it is little more than name calling, and assuming it’s true, Richard Dawkins ought to be ashamed.
Another great example is pointing out how little science, outside of medicine (and parapsychology) makes use of blind experiments. It has been demonstrated time and again that if experimenters have an expected outcome, they will influence the results of the experiment. A good example was an experiment using rats in a maze. The experimenters were split into two, one set given highly intelligent rats, the other given slow rats. Not surprisingly, the intelligent rats completed the mazes very significantly faster. Only they were both the same type of rats. The only difference was the experimenters’ expectations. When physicists undertake an experiment (the hunt for a Higgs boson, say), they are not usually open minded, they are looking for a specific outcome. It’s rather scary to think just how much they may be biasing the experimental outcome (and what’s published – at least 90 percent of data isn’t) towards the results they expect.
So there’s good stuff in here that everyone working in science, or thinking about science, ought to consider. But then there’s the downside. We’ve all got friends who are obsessed with their hobbies. And whatever you are talking about, they will bring in their pet topic. So you might be discussing the banking crisis and your friend who is a bus enthusiast pipes up, ‘Yes, and it’s amazing what an effect it has had on bus timetables.’ Reading a Rupert Sheldrake book, you are always thinking, ‘Please don’t do it, Rupert. Don’t mention it, Rupert. Please!’ But inevitably along comes morphic resonance and morphic fields.
The thing is, Sheldrake is a legitimate scientist who came up with an idea that has been largely ignored or ridiculed. Morphic resonance (apart from sounding far too much like a weapon the Borg would use) is actually not a bad idea and deserves further investigation. But as soon as you bring your pet unsupported scientific theories into a book it degrades the rest of it. Morphic fields might illustrate well the kind of problem with assumptions and conventions that Sheldrake is trying to highlight, but because they are so speculative, they simply get in the way. He should have left them out.
Similarly there is quite a lot here that will put the backs up of many readers. Material that seems supportive of anything from homeopathy to the concept of chi (qi) in ancient Chinese medicine. The trouble here is that Sheldrake seems to be confusing two things. It is perfectly possible that there are phenomena like telepathy that exist (at least in perception) but aren’t well explained by current scientific theories. But this doesn’t mean that you should give any support to totally fictional theories that have no basis in observation and what we do know about science. We may well need new ideas, new mechanisms – but not hauling out hoary old ideas that are long past their sell-by date. He should have trimmed this guff out, which would not in any way have weakened the main thrust of the book.
Overall, then, a valuable and powerful message, but one that is almost certainly going to be lost to those who most need to hear of it because of the unfortunate trappings that have also been included.
Hardback:  
Also on Kindle:  
Review by Brian Clegg

Comments

  1. Too kind by far. Sheldrake is saying nothing new. As an ancient Greek might have said "Life is short, and art long, opportunity fleeting, experimentations perilous, and judgment difficult." Any decent scientist knows that better than Sheldrake. Dawkins was right to be dismissive.

    ReplyDelete

Post a Comment

Popular posts from this blog

Astrophysics for People in a Hurry – Neil deGrasse Tyson *****

When I reviewed James Binney’s Astrophysics: A Very Short Introduction earlier this year, I observed that the very word ‘astrophysics’ in a book’s title is liable to deter many readers from buying it. As a former astrophysicist myself, I’ve never really understood why it’s considered such a scary word, but that’s the way it is. So I was pleasantly surprised to learn, from Wikipedia, that this new book by Neil deGrasse Tyson ‘topped The New York Times non-fiction bestseller list for four weeks in the middle of 2017’.

Like James Binney, Tyson is a professional astrophysicist with a string of research papers to his name – but he’s also one of America’s top science popularisers, and that’s the hat he’s wearing in this book. While Binney addresses an already-physics-literate audience, Tyson sets his sights on a much wider readership. It’s actually very brave – and honest – of him to give physics such prominent billing; the book could easily have been given a more reader-friendly title such …

Once upon and Algorithm - Martin Erwig ***

I've been itching to start reading this book for some time, as the premise was so intriguing - to inform the reader about computer science and algorithms using stories as analogies to understand the process.

This is exactly what Martin Erwig does, starting (as the cover suggests) with Hansel and Gretel, and then bringing in Sherlock Holmes (and particularly The Hound of the Baskervilles), Indiana Jones, the song 'Over the Rainbow' (more on that in a moment), Groundhog Day, Back to the Future and Harry Potter.

The idea is to show how some aspect of the story - in the case of Hansel and Gretel, laying a trail of stones/breadcrumbs, then attempting to follow them home - can be seen as a kind of algorithm or computation and gradually adding in computing standards, such as searching, queues and lists, loops, recursion and more.

This really would have been a brilliant book if Erwig had got himself a co-author who knew how to write for the public, but sadly the style is mostly heavy…

Cosmology for the Curious - Delia Perlov and Alex Vilenkin ***

In the recently published The Little Book of Black Holes we saw what I thought was pretty much impossible - a good, next level, general audience science title, spanning the gap between a typical popular science book and an introductory textbook, but very much in the style of popular science. Cosmology for the Curious does something similar, but coming from the other direction. This is an introductory textbook, intended for first year physics students, with familiar textbook features like questions to answer at the end of each chapter. Yet by incorporating some history and context, plus taking a more relaxed style in the writing, it's certainly more approachable than a typical textbook.

The first main section, The Big Bang and the Observable Universe not only covers basic big bang cosmology but fills in the basics of special and general relativity, Hubble's law, dark matter, dark energy and more. We then move onto the more speculative (this is cosmology, after all) aspects, brin…