Skip to main content

The Theory that would not Die – Sharon Bertsch Mcgrayne ***

Occasionally I review a book that makes me think ‘I wish I wrote that’ – and sometimes I nearly did. The subject of Sharon Bertsch Mcgrayne’s book, as the rather lengthy subtitle tells us is ‘how Bayes’ rule cracked the Enigma code, hunted down Russian submarines and emerged triumphant from two centuries of controversy.’ There is no doubt that Bayes’ theorem is the most intriguing piece of maths most people have never heard of, and I did once write a proposal for a book about it, but the publisher said no one would get it. I believe they should get it. But Bayes’ theorem, though simple, is famously difficult to keep in mind. So a significant test of this book is how well Mcgrayne gets across what the theorem really is.
The good news is that this isn’t a stuffy book of heavy mathematics – Mcgrayne has a light touch and an airy style. I did worry early on if it was too airy as she resorts to language that is a little cringeworthy. She says ‘In 1731 [Bayes] wrote a pamphlet – a kind of blog’ – now if she had said ‘if he was alive today he would probably have written a blog’ I would have been comfortable. But to put it the way she does… I can imagine her writing about Shakespeare: ‘Around this time, Shakespeare wrote his first play – a kind of movie.’
This is mildly worrying, but what is more concerning is the way she handles the topic of another pamphlet Bayes wrote. It was, it seems, a response to George Berkeley’s ‘The Analyst: A discourse addressed to an infidel mathematician.’ The infidel in question was Edmund Halley, an atheist, and concerned calculus. Berkeley’s points out that Halley mocks believers for taking things on faith, yet supports a mathematical concept that requires you to do maths with something that disappears, as Berkeley puts it ‘The ghosts of departed quantities’, which also takes faith. In his quite detailed analysis, Berkeley points out a legitimate mathematical flaw in the basis of the calculus, as practised at the time.
But Mcgrayne’s take is quite different. She calls it an ‘inflammatory pamphlet attacking Dissenting mathematicians and… “infidel mathematicians” who believed that reason could illuminate any subject.’ That is patently wrong. Halley was not a Dissenter in the usual sense of the word, and Berkeley’s attack on the basis of calculus was, mathematically, correct. Berkeley was, in reality, arguing for the use of reason and at the same time attacking Halley’s lack of Christian faith, something Bayes would have heartily agreed with. What worries me is if the reality of Berkeley’s pamphlet could be so distorted to fit a particular viewpoint, how many other historical facts have been misused? This might be a single instance, but it was a bit worrying, coming as it does on page 4.
The bulk of the book concerns the 200 year battle between two types of statistics. Broadly there is frequentist statistics, the one you are likely to be familiar with, where you gather lots of data and spot trends, calculate means and all that good stuff. Then there is Bayesian statistics. This starts with an prior knowledge, or probabilities you might have, even if not directly about the problem in hand, then transforms this prior knowledge with new data as and when it is available. This means it can produce useful results with far less data – a more typical real world situation – but the maths can be quite messy, and it has a degree of subjectivity that mathematicians have always shied away from.
I did a masters in operational research in the 1970s, a discipline that Mcgrayne tells us was founded on Bayesian statistics, but never once heard anything about them on my course. This shows just how much fashions have often swung against Bayes.
So how does the book do? Not brilliantly. It is irritating vague about how Bayesian statistics works, combining a totally opaque formula early on with example after example that really just describes the inputs without ever saying how they are used. To make matters worse there is chapter after chapter of what is basically two bunches of statisticians arguing and Bayesian statistics sort of being used in rather uninspiring circumstances. It only really came alive for me when the author was describing its use in the hunt for mislaid nuclear weapons – and even then it is not at all clear how the technique was used from the way she describes it.
Most frustrating of all is that the second appendix contains a very clear example of a simple Bayesian working with a remarkable result. This is the first time in the whole book that it becomes fairly obvious what is going on with Bayesian statistics. This example should have been right up front, not in an appendix that half the readers won’t even bother with, and there should have been similarly clear examples of some of the more complex applications. Not in full detail, but enough to get a feel for what is happening.
Overall, then, it seems the publishers who didn’t want me to write about this made the correct call. I am the ideal audience – I worked in operational research, for goodness sake. And I still found most of it uninspiring and hard to understand how Bayesian methods were being used in the particular examples. What a shame.

Hardback:  

Kindle:  
Using these links earns us commission at no cost to you
Review by Brian Clegg

Comments

Popular posts from this blog

The Antigravity Enigma - Andrew May ****

Antigravity - the ability to overcome the pull of gravity - has been a fantasy for thousands of years and subject to more scientific (if impractical) fictional representation since H. G. Wells came up with cavorite in The First Men in the Moon . But is it plausible scientifically?  Andrew May does a good job of pulling together three ways of looking at our love affair with antigravity (and the related concept of cancelling inertia) - in science fiction, in physics and in pseudoscience and crankery. As May points out, science fiction is an important starting point as the concept was deployed there well before we had a good enough understanding of gravity to make any sensible scientific stabs at the idea (even though, for instance, Michael Faraday did unsuccessfully experiment with a possible interaction between gravity and electromagnetism). We then get onto the science itself, noting the potential impact on any ideas of antigravity that come from the move from a Newtonian view of a...

The World as We Know It - Peter Dear ***

History professor Peter Dear gives us a detailed and reasoned coverage of the development of science as a concept from its origins as natural philosophy, covering the years from the eighteenth to the twentieth century. inclusive If that sounds a little dry, frankly, it is. But if you don't mind a very academic approach, it is certainly interesting. Obviously a major theme running through is the move from largely gentleman natural philosophers (with both implications of that word 'gentleman') to professional academic scientists. What started with clubs for relatively well off men with an interest, when universities did not stray far beyond what was included in mathematics (astronomy, for instance), would become a very different beast. The main scientific subjects that Dear covers are physics and biology - we get, for instance, a lot on the gradual move away from a purely mechanical views of physics - the reason Newton's 'action at a distance' gravity caused such ...

It's On You - Nick Chater and George Loewenstein *****

Going on the cover you might think this was a political polemic - and admittedly there's an element of that - but the reason it's so good is quite different. It shows how behavioural economics and social psychology have led us astray by putting the focus way too much on individuals. A particular target is the concept of nudges which (as described in Brainjacking ) have been hugely over-rated. But overall the key problem ties to another psychological concept: framing. Huge kudos to both Nick Chater and George Loewenstein - a behavioural scientist and an economics and psychology professor - for having the guts to take on the flaws in their own earlier work and that of colleagues, because they make clear just how limited and potentially dangerous is the belief that individuals changing their behaviour can solve large-scale problems. The main thesis of the book is that there are two ways to approach the major problems we face - an 'i-frame' where we focus on the individual ...