Skip to main content

Seven Tales of the Pendulum – Gregory L. Baker ***

There was a time when practically every review we published of an OUP popular science book had the same complaint. What we were forced to say again and again was that this was a book with a great idea, an excellent topic, and an expert writing it. But unfortunately that expert was an academic who didn’t have a clue how to write for the general public and the result was unreadable. In the last year or so, however, things have changed. OUP has come out with a good number of titles (e.g. The Many Worlds of Hugh Everett III) which have been surprisingly readable. Unfortunately, this title is a return to form. It’s a wonderful subject. It has a neat concept in the ‘seven tales’. It’s written by an expert. But it is practically impenetrable.
Things don’t start awfully well in the introduction, when Gregory L. Baker is a little condescending about producing a version of his ‘real’ book for the common herd. But he also reassures us ‘Readers may rest easy knowing that I am mindful of the warning made famous by Stephen Hawking, that every formula reduces the readership by a factor of two.’ The problem is, although it sold well, Hawking’s book has a reputation for being difficult. Yet it is vastly easier to read than this one.
This limitation is frustrating, because Baker does pack in lots of interesting stuff about pendulums. Whether it’s the basic surprise that (despite Galileo), on the whole an ordinary pendulum’s timing isn’t independent of swing size, or explorations of Foucault’s pendulum, torsion pendulums, swinging censors in cathedrals and even the Pit and the Pendulum, there is some excellent material to cover. But the writing is rarely approachable and the author simply misses the whole idea of how to write for a general audience. This is much more the sort of writing you’d find in an undergraduate physics textbook.
I opened a page at random and had a choice of at least four quotes to demonstrate this. Here’s one of them: ‘A sophisticated mathematical procedure may be used to calculate the fractal dimension for the Poincaré section of the chaotic pendulum. But our intuition can at least help demystify the result. Close examination of the Poincaré section shows that its points do not cover an area, but are really a (possibly infinite) set of closely spaced lines. Therefore the Poincaré section is more than a line and less than an area. We then expect its dimension to like between one and two. For the parameter set A(Forcing)=1.5, Q (friction)=4, ωD(forcing frequency)=0.66 the fractal dimension is found to be 1.3. In fact, it is generally true that Poincaré sections for chaotic systems have noninteger dimensions.’ That’s all right then.
The other potential quotes were more dense and impenetrable. You might excuse this because some of the terms have been explained earlier, but the problem is that the approach assumes the way to write popular science is to take a textbook and take out the maths, leaving the explanatory parts, rather than starting from scratch and putting things in terms that people will understand.
Overall, then, a useful and interesting book for physics students who want to find out more about pendulums without doing the maths, but not for the general reader.

Hardback:  

Kindle:  
Using these links earns us commission at no cost to you
Review by Brian Clegg

Comments

Popular posts from this blog

The Antigravity Enigma - Andrew May ****

Antigravity - the ability to overcome the pull of gravity - has been a fantasy for thousands of years and subject to more scientific (if impractical) fictional representation since H. G. Wells came up with cavorite in The First Men in the Moon . But is it plausible scientifically?  Andrew May does a good job of pulling together three ways of looking at our love affair with antigravity (and the related concept of cancelling inertia) - in science fiction, in physics and in pseudoscience and crankery. As May points out, science fiction is an important starting point as the concept was deployed there well before we had a good enough understanding of gravity to make any sensible scientific stabs at the idea (even though, for instance, Michael Faraday did unsuccessfully experiment with a possible interaction between gravity and electromagnetism). We then get onto the science itself, noting the potential impact on any ideas of antigravity that come from the move from a Newtonian view of a...

The World as We Know It - Peter Dear ***

History professor Peter Dear gives us a detailed and reasoned coverage of the development of science as a concept from its origins as natural philosophy, covering the years from the eighteenth to the twentieth century. inclusive If that sounds a little dry, frankly, it is. But if you don't mind a very academic approach, it is certainly interesting. Obviously a major theme running through is the move from largely gentleman natural philosophers (with both implications of that word 'gentleman') to professional academic scientists. What started with clubs for relatively well off men with an interest, when universities did not stray far beyond what was included in mathematics (astronomy, for instance), would become a very different beast. The main scientific subjects that Dear covers are physics and biology - we get, for instance, a lot on the gradual move away from a purely mechanical views of physics - the reason Newton's 'action at a distance' gravity caused such ...

It's On You - Nick Chater and George Loewenstein *****

Going on the cover you might think this was a political polemic - and admittedly there's an element of that - but the reason it's so good is quite different. It shows how behavioural economics and social psychology have led us astray by putting the focus way too much on individuals. A particular target is the concept of nudges which (as described in Brainjacking ) have been hugely over-rated. But overall the key problem ties to another psychological concept: framing. Huge kudos to both Nick Chater and George Loewenstein - a behavioural scientist and an economics and psychology professor - for having the guts to take on the flaws in their own earlier work and that of colleagues, because they make clear just how limited and potentially dangerous is the belief that individuals changing their behaviour can solve large-scale problems. The main thesis of the book is that there are two ways to approach the major problems we face - an 'i-frame' where we focus on the individual ...