Skip to main content

The Many Worlds of Hugh Everett III – Peter Byrne ***

This is a book that made me check and see if it really was published by Oxford University Press. Yes, it had the physical feel of an OUP book – top quality, excellent paper and unusually heavy for its size – but as I started to read, the style was all wrong. OUP popular science books tend to the over-academic in writing style, but this had the feel of an American quality magazine. That was decidedly refreshing – the style had been over used in popular science books after coming into fashion with the likes of James Gleick’s Chaos, but it has become less common, so was encouragingly peppy.
I ought to explain straight away why what I consider in many ways to be an excellent book has only got three stars. This is because the content simply doesn’t work for our measure of a reader with no qualifications in the subject. If you have a physics degree, or possibly if you are a student of philosophy, you will find much in here that is fascinating, and when Peter Byrne is sticking to the biographical side, it’s very approachable, but when he gets into the science, and particularly the interpretation of the science, the wording can be more than a touch impenetrable. This isn’t always because of the science itself – sometimes the wording gets overly heavy. Take these two example sentences:
The problem he pointed to is that in the objective formalism of quantum mechanics, nature proceeds causally, deterministically, but our perception of nature is subjective: macroscopic reality appears to emerge randomly, non-causally, from the microcosm.
and
Bohr’s philosophy of complimentarity can be viewed as an epistemological framework for holding mutually exclusive opposites: the quantum world is the inaccessible thing itself, the classical world reflects the quantum, bringing it into the realm of reason and knowledge as classically described phenomena.
There’s hardly any science to speak of in these sentences, it’s just that the vocabulary is hardly that of a general interest book.
Any biographer has a problem with the opening. The reader buys the book to read about the subject – (s)he doesn’t really care about the subject’s parents, but the author feels a need to introduce them too, as they are bound to havehad some influence. This is doubly hard in the particular case of Everett. As we don’t really know why we should care about Everett, we really don’t have any interest in, for example, his mother’s poetry. Things liven up when we get to Everett himself, but it takes a certain amount of determination to get through those first couple of chapters.
There’s no doubt that Everett was a fascinating man. Hugely intelligent, yet cold in his attitude to humanity – almost the classic mad scientist type. The sections of the book that are about Everett’s life grab the attention. But focus is likely to stray somewhat in the interwoven chapters about his work. The big problem here is that Byrne never really answers the idiot questions. He comes at Everett’s work as a scientist would. But the general reader wants to know more fundamental things.
So, for example, Everett’s many worlds theory is put forward to deal with the ‘measurement problem.’ Simply put, this asks why big objects like people, made of quantum particles, behave totally differently to the particles themselves. They don’t have the same apparently probabilistic nature. Why is it that measurement seems to pin down a particle where previously it just had a range of probabilities of being in different places, and why are real world sized objects permanently pinned down? Everett answered this by suggesting that everything acts in the spread-out quantum fashion, but each different possibility is in a different parallel world, and we only experience one of these. But the idiot question is why doesn’t the fact that all the particles in my body are always interacting with each other mean the probabilities are permanently collapsed, because that interaction is the equivalent of measurement? Why is there a problem at all? This is never properly explained in a way that the general reader can follow, and therefore the whole exercise seems futile.
The other issue for the non-specialist is how much they can bring themselves to care about Everett. With someone like Einstein or Richard Feynman we have both a remarkable character and someone whose work had a profound effect on science. Everett doesn’t seem to have been the kind of character many would like, and it’s hard to get excited about his achievements. They broadly seem to split between game theory and the multiple worlds idea. When in the late 1970s I started work in Operational Research (the UK equivalent of the Operations Research much mentioned in the book), game theory really had already been dismissed as useless. It was interesting, fun, thought provoking – but not practical for the real world. I never once saw game theory used either at university or in one of the biggest OR departments in the country.
As for the many worlds idea, in the end it’s an interpretation, not something of huge value. It hasn’t got broad support in the community and it certainly (dramatically!) fails Occam’s Razor. A clever idea, penetratingly thought through… but not one that has done a lot for real physics or applied science.
If this sounds negative, I’m not saying you shouldn’t read this book. There’s some in-depth detail on the startling decisions being made on whether or not to start a nuclear bombardment during the cold war. For those with the technical interest, the content is stimulating, and Everett seems to have been one of kind… but I can’t say this is the kind of scientific biography that will appeal to a wide readership.

Hardback:  
Review by Brian Clegg

Comments

Popular posts from this blog

Superior - Angela Saini *****

It was always going to be difficult to follow Angela Saini's hugely popular Inferior, but with Superior she has pulled it off, not just in the content but by upping the quality of the writing to a whole new level. Where Inferior looked at the misuse of science in supporting sexism (and the existence of sexism in science), Superior examines the way that racism has been given a totally unfounded pseudo-scientific basis in the past - and how, remarkably, despite absolute evidence to the contrary, this still turns up today.

At the heart of the book is the scientific fact that 'race' simply does not exist biologically - it is nothing more than an outdated social label. As Saini points out, there are far larger genetic variations within a so-called race than there are between individuals supposedly of different races. She shows how, pre-genetics, racial prejudice was given a pseudo-scientific veneer by dreaming up fictitious physical differences over and above the tiny distinct…

Artificial Intelligence - Yorick Wilks ****

Artificial intelligence is one of those topics where it's very easy to spin off into speculation, whether it's about machine conciousness or AI taking over the world (and don't get me onto the relatively rare connection to robots - cover designer please note). All the experience of AI to date has been that it has been made feasible far slower than originally predicted, and that it faces dramatic limitations. So, for example, self-driving cars may be okay in limited circumstances, but are nowhere near ready for the commute home. Similarly, despite all the moves forward in AI technology, computers are so-so at recognising objects after learning from thousands of examples - sometimes fooled by apparently trivial surface patterning - where humans can recognise items from a handful of examples.

Even so, we can't deny that AI is having an influence on our lives and Yorick Wilks, emeritus professor of AI at the University of Sheffield, is ideally placed to give us a picture …

Where are the chemistry popular science books?

by Brian Clegg
There has never been more emphasis on the importance of public engagement. We need both to encourage a deeper interest in science and to counter anti-scientific views that seem to go hand-in-hand with some types of politics. Getting the public interested in science both helps recruit new scientists of the future and spreads an understanding of why an area of scientific research deserves funding. Yet it is possible that chemistry lags behind the other sciences in outreach. As a science writer, and editor of this website, I believe that chemistry is under-represented in popular science. I'd like to establish if this is the case, if so why it is happening - and what can be done to change things. 


An easy straw poll is provided by the topic tags on the site. At the time of writing, there are 22 books under 'chemistry' as opposed to 97 maths, 126 biology and 182 physics. The distribution is inevitably influenced by editorial bias - but as the editor, I can confirm …