Skip to main content

The Many Worlds of Hugh Everett III – Peter Byrne ***

This is a book that made me check and see if it really was published by Oxford University Press. Yes, it had the physical feel of an OUP book – top quality, excellent paper and unusually heavy for its size – but as I started to read, the style was all wrong. OUP popular science books tend to the over-academic in writing style, but this had the feel of an American quality magazine. That was decidedly refreshing – the style had been over used in popular science books after coming into fashion with the likes of James Gleick’s Chaos, but it has become less common, so was encouragingly peppy.
I ought to explain straight away why what I consider in many ways to be an excellent book has only got three stars. This is because the content simply doesn’t work for our measure of a reader with no qualifications in the subject. If you have a physics degree, or possibly if you are a student of philosophy, you will find much in here that is fascinating, and when Peter Byrne is sticking to the biographical side, it’s very approachable, but when he gets into the science, and particularly the interpretation of the science, the wording can be more than a touch impenetrable. This isn’t always because of the science itself – sometimes the wording gets overly heavy. Take these two example sentences:
The problem he pointed to is that in the objective formalism of quantum mechanics, nature proceeds causally, deterministically, but our perception of nature is subjective: macroscopic reality appears to emerge randomly, non-causally, from the microcosm.
and
Bohr’s philosophy of complimentarity can be viewed as an epistemological framework for holding mutually exclusive opposites: the quantum world is the inaccessible thing itself, the classical world reflects the quantum, bringing it into the realm of reason and knowledge as classically described phenomena.
There’s hardly any science to speak of in these sentences, it’s just that the vocabulary is hardly that of a general interest book.
Any biographer has a problem with the opening. The reader buys the book to read about the subject – (s)he doesn’t really care about the subject’s parents, but the author feels a need to introduce them too, as they are bound to havehad some influence. This is doubly hard in the particular case of Everett. As we don’t really know why we should care about Everett, we really don’t have any interest in, for example, his mother’s poetry. Things liven up when we get to Everett himself, but it takes a certain amount of determination to get through those first couple of chapters.
There’s no doubt that Everett was a fascinating man. Hugely intelligent, yet cold in his attitude to humanity – almost the classic mad scientist type. The sections of the book that are about Everett’s life grab the attention. But focus is likely to stray somewhat in the interwoven chapters about his work. The big problem here is that Byrne never really answers the idiot questions. He comes at Everett’s work as a scientist would. But the general reader wants to know more fundamental things.
So, for example, Everett’s many worlds theory is put forward to deal with the ‘measurement problem.’ Simply put, this asks why big objects like people, made of quantum particles, behave totally differently to the particles themselves. They don’t have the same apparently probabilistic nature. Why is it that measurement seems to pin down a particle where previously it just had a range of probabilities of being in different places, and why are real world sized objects permanently pinned down? Everett answered this by suggesting that everything acts in the spread-out quantum fashion, but each different possibility is in a different parallel world, and we only experience one of these. But the idiot question is why doesn’t the fact that all the particles in my body are always interacting with each other mean the probabilities are permanently collapsed, because that interaction is the equivalent of measurement? Why is there a problem at all? This is never properly explained in a way that the general reader can follow, and therefore the whole exercise seems futile.
The other issue for the non-specialist is how much they can bring themselves to care about Everett. With someone like Einstein or Richard Feynman we have both a remarkable character and someone whose work had a profound effect on science. Everett doesn’t seem to have been the kind of character many would like, and it’s hard to get excited about his achievements. They broadly seem to split between game theory and the multiple worlds idea. When in the late 1970s I started work in Operational Research (the UK equivalent of the Operations Research much mentioned in the book), game theory really had already been dismissed as useless. It was interesting, fun, thought provoking – but not practical for the real world. I never once saw game theory used either at university or in one of the biggest OR departments in the country.
As for the many worlds idea, in the end it’s an interpretation, not something of huge value. It hasn’t got broad support in the community and it certainly (dramatically!) fails Occam’s Razor. A clever idea, penetratingly thought through… but not one that has done a lot for real physics or applied science.
If this sounds negative, I’m not saying you shouldn’t read this book. There’s some in-depth detail on the startling decisions being made on whether or not to start a nuclear bombardment during the cold war. For those with the technical interest, the content is stimulating, and Everett seems to have been one of kind… but I can’t say this is the kind of scientific biography that will appeal to a wide readership.

Hardback:  
Using these links earns us commission at no cost to you
Review by Brian Clegg

Comments

Popular posts from this blog

Lucy Jane Santos - Four Way Interview

Lucy Jane Santos is an expert in the history of 20th century leisure, health and beauty, with a particular interest in (some might say obsession with) the cultural history of radioactivity. Writes & talks (a lot) about cocktails and radium. Her debut book Half Lives: The Unlikely History of Radium was published by Icon Books in July 2020.

Why science?

I have always been fascinated by the idea of science especially our daily interactions with and understandings of science – especially in a beauty context. I could spend hours pondering the labels of things on my bathroom shelf. What is 4-t-butylcyclohexanol (as a random example)? Do I really understand what I am putting on my face and spending my money on? Would it change my purchase habits if I did?  

Why this book?

This book came from an accidental discovery – that there was a product called Tho Radia which contained radium and thorium. I found out about it because I actually bought a pot of it – along with a big batch of other produc…

Rewilding: Paul Jepson and Cain Blythe ****

Those who are enthusiastic about saving the environment often have a mixed relationship with science. They might for example, support organic farming or oppose nuclear power, despite organics having no nutritional benefit and requiring far more land to be used to raise the same amount of crops, while nuclear is a green energy source that should be seen as an essential support to renewables. This same confusion can extend to the concept of rewilding, which is one reason that the subtitle of this book uses the word 'radical'.

As Paul Jepson and Cain Blythe make clear, though, radical change is what is required if we are to encourage ecological recovery. To begin with, we need to provide environments for nature that take in the big picture - thinking not just of individual nature reserves but, for example, of corridors that link areas allowing safe species migration. And we also need to move away from an arbitrary approach to restricting to 'native' species, as sometimes…

Is Einstein Still Right? - Clifford Will and Nicolas Yunes ***

If there's one thing that gets a touch tedious in science reporting it's the news headlines that some new observation or experiment 'proves Einstein right' - as if we're still not sure about relativity. At first glance that's what this book does too, but in reality Clifford Will and Nicolas Yunes are celebrating the effectiveness of the general theory of relativity, while being conscious that there may still be situations where, for whatever reason, the general theory is not sufficient.

It's a genuinely interesting book - what Will and Yunes do is take experiments that are probably familiar to the regular popular science reader already and expand on the simplified view of them we are usually given. So, for example, one of the first things they mention is the tower experiments to show the effect of gravitational red shift. I was aware of these experiments, but what we get here goes beyond the basics of the conceptual experiment to deal with the realities of d…