Skip to main content

Why Balloons Rise and Apples Fall – Jeff Stewart ****

In this quite short book, Jeff Stewart gives us the basics of physics in easy, digestible terms. If your memory of physics from school is dull, a) you had a bad physics teacher and b) Stewart’s version will be a refreshing surprise.
From the point of view of popular science writing, Stewart fills a gaping hole – and I’m really pleased to see it. Authors like to bang on about the latest theories and the most weird and wonderful stuff. That’s fine, but it means there are very few popular science titles taking on the basic meat and two veg of physics – and this is exactly what Stewart does. At just the right level for the beginner he runs us through all the classical physics that no one bothers with, yet is at the heart of everyday life.
So we have Newton’s laws, energy, power, electricity, magnetism. All that good stuff that you may not even have had properly at school if you did general science. This is highly laudable.
I do have a couple of hesitations. One is very personal. Stewart’s style is one I am more comfortable with in children’s books than one aimed at adults, as this is. It is very jokey. All the time we get (to pick one at random) little comments like ‘… would be like thirty of the nuclear bombs dropped on Nagasaki all going on at once. And that’s going to hurt, even if you’ve got your plastic lab glasses and rubber gloves on.’ Yerrrs. Some people will love this style, but it really puts my back up. Whenever I put a joke in one of my books, the editor politely suggests I remove it – and he’s right.
The other issue is that after doing a good job on classical physics, he really rather rushes through 20th century physics. The chapter on relativity isn’t too bad, but the quantum physics chapter is very sketchy and the final chapter labelled ‘the universe’ is a bit of a mess. It contains the only obvious factual errors – he says that Hubble discovered the Andromeda galaxy in 1925, but it was known of a good 1,000 years before, and Herschel in the 18th century even suggested it was another Milky Way, i.e. another galaxy. He also makes the factual error of saying that ‘Andromeda – and everything else in the universe – is getting further away from us all the time.’ In fact the Andromeda galaxy is heading towards us, as it’s close enough for gravitational attraction to be stronger than the expansion of the universe.
There’s also a very tangled sentence about Grand Universal Theories, where he tantalisingly says that Mark Hadley devised what (by implication) is a better GUT than string theory in the 1990s, but it’s ignored because ‘it could be argued a thousand scientists are working on their GUTs simply because a thousand scientists are working on their GUTs – and because the best way to get funding for your GUT work is for a bunch of other scientists to agree that what you’re working on is worth the massive grant your GUT needs.’ I know what he’s trying to say, but it’s hard to understand it from that.
If you consider the last couple of chapters an epilogue and concentrate on the rest, though, this is an excellent little book for putting across the basics of classical physics to the uninitiated, and as such deserves praise.

Hardback:  
Using these links earns us commission at no cost to you
Review by Brian Clegg

Comments

Popular posts from this blog

The Antigravity Enigma - Andrew May ****

Antigravity - the ability to overcome the pull of gravity - has been a fantasy for thousands of years and subject to more scientific (if impractical) fictional representation since H. G. Wells came up with cavorite in The First Men in the Moon . But is it plausible scientifically?  Andrew May does a good job of pulling together three ways of looking at our love affair with antigravity (and the related concept of cancelling inertia) - in science fiction, in physics and in pseudoscience and crankery. As May points out, science fiction is an important starting point as the concept was deployed there well before we had a good enough understanding of gravity to make any sensible scientific stabs at the idea (even though, for instance, Michael Faraday did unsuccessfully experiment with a possible interaction between gravity and electromagnetism). We then get onto the science itself, noting the potential impact on any ideas of antigravity that come from the move from a Newtonian view of a...

The World as We Know It - Peter Dear ***

History professor Peter Dear gives us a detailed and reasoned coverage of the development of science as a concept from its origins as natural philosophy, covering the years from the eighteenth to the twentieth century. inclusive If that sounds a little dry, frankly, it is. But if you don't mind a very academic approach, it is certainly interesting. Obviously a major theme running through is the move from largely gentleman natural philosophers (with both implications of that word 'gentleman') to professional academic scientists. What started with clubs for relatively well off men with an interest, when universities did not stray far beyond what was included in mathematics (astronomy, for instance), would become a very different beast. The main scientific subjects that Dear covers are physics and biology - we get, for instance, a lot on the gradual move away from a purely mechanical views of physics - the reason Newton's 'action at a distance' gravity caused such ...

It's On You - Nick Chater and George Loewenstein *****

Going on the cover you might think this was a political polemic - and admittedly there's an element of that - but the reason it's so good is quite different. It shows how behavioural economics and social psychology have led us astray by putting the focus way too much on individuals. A particular target is the concept of nudges which (as described in Brainjacking ) have been hugely over-rated. But overall the key problem ties to another psychological concept: framing. Huge kudos to both Nick Chater and George Loewenstein - a behavioural scientist and an economics and psychology professor - for having the guts to take on the flaws in their own earlier work and that of colleagues, because they make clear just how limited and potentially dangerous is the belief that individuals changing their behaviour can solve large-scale problems. The main thesis of the book is that there are two ways to approach the major problems we face - an 'i-frame' where we focus on the individual ...